【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
(1)求a,b的值;
(2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.
【答案】
(1)解:∵ , ,
由 ,
∴ ,
又∵a,b∈N*,
∴b=1,a=1;
(2)解:由(1)得 ,
函數(shù)在(﹣1,+∞)單調(diào)遞增.
證明:任取x1,x2且﹣1<x1<x2,
= ,
∵﹣1<x1<x2,
∴ ,
∴ ,
即f(x1)<f(x2),
故函數(shù) 在(﹣1,+∞)上單調(diào)遞增
【解析】(1)由 , , ,從而求出b=1,a=1;(2)由(1)得 ,得函數(shù)在(﹣1,+∞)單調(diào)遞增.從而有f(x1 )﹣f(x2 )= ,進而 ,故函數(shù) 在(﹣1,+∞)上單調(diào)遞增.
【考點精析】通過靈活運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
(1)若函數(shù)在區(qū)間[﹣1,1]上存在零點,求實數(shù)q的取值范圍;
(2)問:是否存在常數(shù)q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.
(1)求橢圓的方程;
(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,動點P(x,y)到兩條坐標軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,給出下列四個結(jié)論: ①曲線W關(guān)于原點對稱;
②曲線W關(guān)于直線y=x對稱;
③曲線W與x軸非負半軸,y軸非負半軸圍成的封閉圖形的面積小于 ;
④曲線W上的點到原點距離的最小值為2﹣
其中,所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x2f'(1).
(1)求f'(1)和函數(shù)x的極值;
(2)若關(guān)于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍;
(3)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在R上定義運算:ab=ab+2a+b,則滿足x(x﹣2)<0的實數(shù)x的取值范圍為( )
A.(0,2)
B.(﹣2,1)
C.(﹣∞,﹣2)∪(1,+∞)
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=120°,過弦AB的中點M作拋物線準線的垂線MN,垂足為N,則 的最大值為( )
A.2
B.
C.1
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點是圓上的任意一點,設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點.
(1)求點的軌跡方程;
(2)已知兩點的坐標分別為, ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com