已知曲線的極坐標(biāo)方程是. 以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是:為參數(shù)),則直線與曲線相交所成的弦的弦長(zhǎng)為        
曲線的極坐標(biāo)方程是,可得到直角坐標(biāo)方程方程為,圓心坐標(biāo)為(2,0),
半徑。直線的參數(shù)方程是:可得直線的一般方程為。圓心到直線的距離為,所以直線與曲線相交所成的弦的弦長(zhǎng)為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右頂點(diǎn)為,過(guò)的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為

(I)求橢圓的方程;
(II)設(shè)拋物線的焦點(diǎn)為F,過(guò)F點(diǎn)的直線交拋物線與A、B兩點(diǎn),過(guò)A、B兩點(diǎn)分別作拋物線的切線交于Q點(diǎn),且Q點(diǎn)在橢圓上,求面積的最值,并求出取得最值時(shí)的拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)平面內(nèi)兩定點(diǎn),直線相交于點(diǎn),且它們的斜率之積為定值。
(I)求動(dòng)點(diǎn)的軌跡的方程;
(II)設(shè),過(guò)點(diǎn)作拋物線的切線交曲線兩點(diǎn),求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線與雙曲線有且只有一個(gè)公共點(diǎn),則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn).
(Ⅰ)過(guò)點(diǎn)作兩相互垂直的弦,設(shè)的橫坐標(biāo)為,用表示△的面積,并求△面積的最小值;
(Ⅱ)過(guò)拋物線上一點(diǎn)引圓的兩條切線,分別交拋物線于點(diǎn), 連接,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C:和直線
(1)當(dāng)時(shí),求圓上的點(diǎn)到直線距離的最小值;
(2)當(dāng)直線與圓C有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn),過(guò)的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。
(1)求的周長(zhǎng)
(2)求的長(zhǎng)                       
(3)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn).
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)對(duì)橢圓C,若直線L交y軸于點(diǎn)M,且,當(dāng)m變化時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線y2=2px的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案