20.計算sin5°cos55°-cos175°sin55°的結(jié)果是( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可化簡求值得解.

解答 解:sin5°cos55°-cos175°sin55°
=sin5°cos55°+cos5°sin55°
=sin(5°+55°)
=sin60°
=$\frac{\sqrt{3}}{2}$.
故選:D.

點評 本題主要考查了誘導(dǎo)公式,兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合M={x||x|<1},在集合M中定義一種運算“*”,使得$a*b=\frac{a+b}{1+ab}$.
(Ⅰ)證明:(a*b)*c=a*(b*c);
(Ⅱ)證明:若a∈M,b∈M,則a*b∈M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知四邊形ACBF內(nèi)接于圓O,F(xiàn)A,BC的延長線交于點D,且FB=FC,AB是△ABC的外接圓的直徑.
(1)求證:AD平分∠EAC;
(2)若AD=4$\sqrt{3}$,∠EAC=120°,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC中,A=$\frac{π}{6}$,BC=$\sqrt{3}$,則△ABC的外接圓面積為( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知2sinα+cosα=0,求下列各式的值:
(1)$\frac{2cosα-sinα}{sinα+cosα}$          
(2)$\frac{sinα}{si{n}^{3}α-co{s}^{3}α}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.對拋物線x2=12y,下列判斷正確的是( 。
A.焦點坐標(biāo)是(3,0)B.焦點坐標(biāo)是(0,-3)C.準(zhǔn)線方程是y=-3D.準(zhǔn)線方程是x=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax,其中a∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,證明:當(dāng)x1≠x2,且f(x1)=f(x2)時,x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:$\frac{2}{5}$lg32-$\frac{4}{3}$lg$\sqrt{8}$+lg2•lg50+(lg5)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b,c∈R,且b>a,則下列命題一定正確的是( 。
A.bc>acB.b3>a3C.b2>a2D.$\frac{1}$<$\frac{1}{a}$

查看答案和解析>>

同步練習(xí)冊答案