5.由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運(yùn)算法則( 。
①“mn=nm”類比得到“$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$”;
②“(m+n)t=mt+nt”類比得到“$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”;
③“(mn)t=m(nt)”類比得到“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b•\overrightarrow c)$”
④“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow c≠\overrightarrow 0,\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow b$”;
以上的式子中,類比得到的結(jié)論正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 利用類比推理可得出相應(yīng)的結(jié)論,但是得出的結(jié)論不一定正確.

解答 解:①由實(shí)數(shù)的乘法法則滿足交換率“mn=nm”類比得到向量也滿足交換率“$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow a$”,正確;
②由實(shí)數(shù)的乘法法則滿足分配律“(m+n)t=mt+nt”類比得到向量也滿足分配律“$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$”,正確;
③由實(shí)數(shù)的乘法法則滿足結(jié)合律“(m•n)t=m(n•t)”類比得到“$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b•\overrightarrow c)$”,不正確,因?yàn)橄蛄?\overrightarrow{c}$與$\overrightarrow{a}$不一定共線;
④由實(shí)數(shù)的乘法滿足消去率“t≠0,mt=xt⇒m=x”類比得到向量滿足“$\overrightarrow c≠\overrightarrow 0,\overrightarrow a•\overrightarrow c=\overrightarrow b•\overrightarrow c⇒\overrightarrow a=\overrightarrow b$”,不正確,∵若非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足$\overrightarrow{a}$$⊥\overrightarrow{c}$,$\overrightarrow$⊥$\overrightarrow{c}$,則$\overrightarrow{a}•\overrightarrow{c}=\overrightarrow•\overrightarrow{c}$,但是$\overrightarrow{a}$=$\overrightarrow$不一定成立;
綜上可知:類比得到的結(jié)論正確的是①②,個(gè)數(shù)是2.
故選B.

點(diǎn)評(píng) 正確理解類比推理的意義和內(nèi)容是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合S={x|$\frac{x+2}{x-5}$<0},P={x|a+1<x<2a+15}
(Ⅰ)求集合S
(Ⅱ)若S∪P=P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面EBD;
(Ⅲ)求二面角E-BD-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.連續(xù)擲一枚骰子兩次,則兩次骰子正面向上的點(diǎn)數(shù)之和為奇數(shù)的概率為(  )
A.$\frac{5}{12}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知某幾何體的三視圖如圖所示,則此幾何體的表面積為( 。
A.$\frac{2}{3}$B.$3+\sqrt{2}+\sqrt{3}$C.2D.$1+2\sqrt{2}+\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 3 4 7 14
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 17 4
乙校:
 分組[70,80)[80,90)[90,100)[100,110)
 頻數(shù) 1 2 8 9
 分組[110,120)[120,130)[130,140)[140,150]
 頻數(shù) 1010  y
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異;
(3)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
 甲校 乙校 總計(jì) 
 優(yōu)秀   
 非優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
臨界值表:
 P(K2≥k0 0.100.05 0.010
 k0 2.706 3.8416.635 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an},a3=4,且a3,a4+2,a5成等差數(shù)列,數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn<m對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某人對(duì)一地區(qū)人均工資x(千元)與該地區(qū)人均消費(fèi)y(千元)進(jìn)行統(tǒng)計(jì)調(diào)查,y與x有相關(guān)關(guān)系,得到回歸直線方程$\hat y$=0.66x+1.56.若該地區(qū)的人均消費(fèi)水平為7.5千元,則該地區(qū)的人均工資收入為9(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同,從中隨機(jī)有放回地抽取3次,每次抽取1張,求下列事件的概率.
(1)求“抽取的卡片上的數(shù)字滿足其中兩張之和等于第三張”的概率;
(2)求“抽取的卡片上的數(shù)字不完全相同”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案