【題目】從某工廠的一個車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:)落在各個小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

頻數(shù)

3

8

9

12

10

5

3

(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在的概率;

(2)求這50件產(chǎn)品尺寸的樣本平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)根據(jù)頻數(shù)分布對應(yīng)的直方圖,可以認為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求.

附:(1)若隨機變量服從正態(tài)分布,則

;

(2).

【答案】(1)0.16;(2)22.7;(3)0.1587.

【解析】試題分析:

(1)由題意可得產(chǎn)品尺寸落在內(nèi)的概率.

(2)由平均數(shù)公式可得樣本平均數(shù)為.

(3)由題意可得.,.

試題解析:

(1)根據(jù)頻數(shù)分布表可知,產(chǎn)品尺寸落在內(nèi)的概率.

(2)樣本平均數(shù)

.

(3)依題意.

,,則.

.

.

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點.

(1)求橢圓的標準方程;

(2)過點的直線交橢圓于兩點,軸上的點,若是以為斜邊的等腰直角三角形, 求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢驗學(xué)習情況,某培訓(xùn)機構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學(xué)員的成績進行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.

(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別為,過的直線交橢圓于兩點.

(1)若以為直徑的圓內(nèi)切于圓,求橢圓的長軸長;

(2)當時,問在軸上是否存在定點,使得為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,.

(1)若,且函數(shù)的圖象是函數(shù)圖象的一條切線,求實數(shù)的值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍;

(3)若對任意實數(shù),函數(shù)上總有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年8月20日起,市交警支隊全面啟動路口秩序環(huán)境綜合治理,重點整治機動車不禮讓斑馬線和行人的行為,經(jīng)過一段時間的治理,從市交警隊數(shù)據(jù)庫中調(diào)取了20個路口近三個月的車輛違章數(shù)據(jù),經(jīng)統(tǒng)計得如圖所示的頻率分布直方圖,統(tǒng)計數(shù)據(jù)中凡違章車次超過30次的設(shè)為“重點關(guān)注路口”.

(1)現(xiàn)從“重點關(guān)注路口”中隨機抽取兩個路口安排交警去執(zhí)勤,求抽出來的路口的違章車次一個在,一個在中的概率;

(2)現(xiàn)從支隊派遣5位交警,每人選擇一個路口執(zhí)勤,每個路口至多1人,違章車次在的路口必須有交警去,違章車次在的不需要交警過去,設(shè)去“重點關(guān)注路口”的交警人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,已知. 

(Ⅰ)設(shè),求數(shù)列的通項公式;

(Ⅱ)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若在定義域上是增函數(shù)的取值范圍;

(2)若存在,使得,的值,并說明理由

查看答案和解析>>

同步練習冊答案