已知三棱錐S-ABC是三條側棱兩兩垂直的三棱錐,O是底面△ABC內的一點,則G=tan∠OSA•tan∠OSB•tan∠OSC的最小值是
 
考點:棱錐的結構特征
專題:空間位置關系與距離
分析:過O分別作與SA、SB、SC平行的平面交三棱錐的側棱,側面于各點,補形得到以SO為對角線的長方體,利用長方體體對角線的平方等于過一個頂點的三條棱的平方和得到cos2α+cos2β+cos2γ=1,移向變形得到sin2α=1-cos2α=cos2β+cos2γ≥2cosβcosγ及另外類似的兩個式子,作積后整理即可得到答案.
解答: 解:如圖,設∠OSA=α,∠OSB=β,∠OSC=γ
過O分別作與SA、SB、SC平行的平面交三棱錐的側棱,側面于如圖所示的點,
得到的圖形是以SO為對角線的長方體,
則cos2α+cos2β+cos2γ=
SD2
SO2

所以sin2α=1-cos2α=cos2β+cos2γ≥2cosβcosγ.
同理sin2β≥2cosαcosγ,sin2γ≥2cosαcosβ.
則sin2α•sin2β•sin2γ≥8cos2α•cos2β•cos2γ.
所以G=tan∠OSA•tan∠OSB•tan∠OSC≥2
2
,
故答案為2
2
點評:本題考查了棱錐的結構特征,考查了同角三角函數(shù)的基本關系式,解答的關鍵是想到補形,把零散的角集中到一個長方體中解決,此題屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,|x|+x2>0“,命題q:“a+c>b+d“是a>b且c>d的充分不必要條件”,則下列結論正確的是( 。
A、命題“p∧q”是真命題
B、命題“(¬p)∧q”是真命題
C、命題“p∧(-q)”是真命題
D、命題“p∨q”是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,120°的二面角的棱上有A,B兩點,AC,BD分別是在這個二面角的兩個半平面內垂直于AB的線段,且AB=4cm,AC=6cm,BD=8cm,則CD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C方程為
x2
a2
+
y2
b2
=1
(a>b>0),左、右焦點分別是F1,F(xiàn)2,若橢圓C上的點P(1,
3
2
)到F1,F(xiàn)2的距離和等于4.
(Ⅰ)寫出橢圓C的方程和焦點坐標;
(Ⅱ)設點Q是橢圓C的動點,求線段F1Q中點T的軌跡方程;
(Ⅲ)直線l過定點M(0,2),且與橢圓C交于不同的兩點A,B,若∠AOB為銳角(O為坐標原點),求直線l的斜率k0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線ax+2y+2=0與直線3x-y-2=0平行,則a的值為( 。
A、-6B、6C、-3D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓C1:x2+y2-2x=0與直線l:y-mx-m=0有兩個不同的交點,則實數(shù)m的取值范圍是( 。
A、(-
3
3
3
3
B、(-
3
3
,0)(0,
3
3
C、[-
3
3
,
3
3
]
D、(-∞,-
3
3
)(
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD=CD,DB平分∠ADC,E為PC的中點.
(Ⅰ)證明:PA∥平面BDE;
(Ⅱ)證明:AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三棱錐P-ABC中PA⊥底面ABC,∠ACB=90°,且PA=AC,則二面角P-BC-A的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)=lnx+x-3的零點所在的區(qū)間是(n,n+1),則正整數(shù)n=
 

查看答案和解析>>

同步練習冊答案