A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 取BD的中點(diǎn)O,連接AO,EO,C′O,推導(dǎo)出∠AOE=30°,∠EOC′=45°,∠OC′E=∠OAE,由正弦定理能求出$\frac{AE}{E{C}^{'}}$的值.
解答 解:取BD的中點(diǎn)O,連接AO,EO,C′O,
∵菱形ABCD沿對(duì)角線(xiàn)BD折起,使得C點(diǎn)至C′,E點(diǎn)在線(xiàn)段AC′上,
∴C′O⊥BD,AO⊥BD,OC′=OA,
∴BD⊥平面AOC′,
∴EO⊥BD,
∵二面角A-BD-E與二面角E-BD-C′的大小分別為30°和45°,
∴∠AOE=30°,∠EOC′=45°,
∵OC′=OA,∴∠OC′E=∠OAE,
由正弦定理得$\frac{OE}{sin∠O{C}^{'}E}$=$\frac{E{C}^{'}}{sin∠EO{C}^{'}}$,
$\frac{OE}{sin∠OAE}=\frac{AE}{sin∠AOE}$,
∴$\frac{E{C}^{'}}{sin∠EO{C}^{'}}=\frac{AE}{sin∠AO{E}^{'}}$,
∴$\frac{AE}{E{C}^{'}}$=$\frac{sin30°}{sin45°}$=$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2}$.
故選:C.
點(diǎn)評(píng) 本題考查線(xiàn)段比值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>3 | B. | a>-1 | C. | a≥-1 | D. | a≥3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com