△ABC的三個內(nèi)角A,B,C對應邊分別為a,b,c.若A,B,C成等差數(shù)列,求證:
c
a+b
+
a
b+c
=1.
考點:等差數(shù)列的性質
專題:證明題,等差數(shù)列與等比數(shù)列
分析:利用A,B,C成等差數(shù)列,可得B=60°,利用余弦定理可得a2+c2=b2+ac,代入求解,即可證明結論.
解答: 證明:在△ABC中,∵A,B,C成等差數(shù)列,
∴B=60°,
∴b2=a2+c2-2accosB=a2+c2-ac,
∴a2+c2=b2+ac,
c
a+b
+
a
b+c
=
bc+c2+a2+ab
(a+b)(b+c)
=
bc+ab+b2+ac
ab+ac+b2+bc
=1.
點評:利用等差數(shù)列的性質確定B,正確運用余弦定理是解題的突破口.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

角α頂點在坐標原點O,始邊與x軸的非負半軸重合,tanα=-2,點P在α的終邊上,點Q(-3,-4),則
OP
OQ
夾角余弦值為( 。
A、-
5
5
B、
11
5
25
C、
5
5
或-
5
5
D、
11
5
25
或-
11
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(
3
sinωx,-cosωx),
b
=(cosωx,cosωx),ω>0,函數(shù)f(x)=
a
b
,且f(x)的圖象相鄰兩條對稱軸間的距離為
π
2

(Ⅰ)求函數(shù)f(x)的最小正周期和單調增區(qū)間;
(Ⅱ)若△ABC的三條邊a,b,c所對的角分別為A,B,C滿足2bcosA=a2,求角A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一扇形周長為60,則它的半徑和圓心角各為多少時扇形面積最大?最大是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(ωx+φ)(ω>0,0<φ<
π
2
)的部分圖象,如圖所示.
(1)求函數(shù)解析式;
(2)若方程f(x)=m在[-
π
12
,
13π
12
]有兩個不同的實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況進行研究,每次試驗一個生物,甲組能使生物成活的概率為
1
3
,乙組能使生物成活的概率為
1
2
,假定試驗后生物成活,則稱該試驗成功,如果生物不成活,則稱該次試驗是失敗的.
(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;
(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進行2次試驗,設試驗成功的總次數(shù)為ξ,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一段時間內(nèi),某種商品價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)如下表:
價格x 1.4 1.6 1.8 2 2.2
需求量y 12 10 7 5 3
(1)畫出散點圖;
(2)求出y對x的線性回歸方程
y
=bx+a;
(3)如果價格定為1.9萬元,預測需求量大約是多少.(結果精確到0.01t)
參考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓臺的上、下底面半徑分別是10cm和20cm,它的側面展開圖的扇環(huán)的圓心角是60°,那么圓臺的表面積、體積分別是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=xsinx-cosx,則y′|x=
π
2
=
 

查看答案和解析>>

同步練習冊答案