(2007•靜安區(qū)一模)(理)點A(1,1)到直線xcosθ+ysinθ-2=0的距離的最大值是
2+
2
2+
2
分析:先由點到直線的距離求得距離模型,再由三角函數(shù)的輔助角公式及三角函數(shù)的性質(zhì)求得最值.
解答:解:由點到直線的距離公式可得,
d=|
cosθ+sinθ-2
cos2θ +sin2θ
|
=|
2
sin(θ+
π
4
)-2|
≤2+
2

故答案為:2+
2
點評:本題主要考查了點到直線的距離公式及三角輔助角公式及三角函數(shù)的性質(zhì)的綜合應(yīng)用,考查了建模和解模的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)一工廠生產(chǎn)的100個產(chǎn)品中有90個一等品,10個二等品,現(xiàn)從這批產(chǎn)品中抽取4個,則其中恰好有一個二等品的概率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)(文)函數(shù)f(x)=x+
2
x
(x∈(0 , 2 ] )
的值域是
[2
2
,+∞)
[2
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)(理)設(shè)滿足不等式
a(x-2)x+3
<2
的解集為A,且1∉A,則實數(shù)a的取值范圍是
(-∞,-8]
(-∞,-8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)設(shè)f(x)=
-2x+a2x+1+b
(a,b為實常數(shù)).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是實數(shù)集上的奇函數(shù),求a與b的值;
(3)(理) 當f(x)是實數(shù)集上的奇函數(shù)時,證明對任何實數(shù)x、c都有f(x)<c2-3c+3成立.
(4)(文)求(2)中函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•靜安區(qū)一模)(文)不等式組
2x-y+2≥0
x≤0
0≤y≤1
表示的平面區(qū)域形狀是一個( 。

查看答案和解析>>

同步練習冊答案