【題目】△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=80,b=100,A= ,則此三角形是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.銳角或鈍角三角形

【答案】C
【解析】解:∵a=80,b=100,A= ,
∴由正弦定理得 ,則sinB= = = ,
sinB= ,0<B<π,且b>a,
∴∠B有兩解,
①當(dāng)B為銳角時(shí),則B∈( , ),
此時(shí)C=π﹣A﹣B= ,則C為鈍角,
∴△ABC是鈍角三角形,
②當(dāng)B為鈍角時(shí),則B∈( ),
此時(shí)C=π﹣A﹣B= ,成立,
∴△ABC是鈍角三角形,
綜上可得,△ABC一定是鈍角三角形,
故選:C.

【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一段圓錐曲線,曲線與兩個(gè)坐標(biāo)軸的交點(diǎn)分別是, , .

Ⅰ)若該曲線表示一個(gè)橢圓,設(shè)直線過(guò)點(diǎn)且斜率是,求直線與這個(gè)橢圓的公共點(diǎn)的坐標(biāo).

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=,若數(shù)列{an}(n∈N*)滿足:a1=1,an+1f(an).

(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.

(2)設(shè)數(shù)列{cn}滿足:cn,求數(shù)列{cn}的前n項(xiàng)的和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù),如果存在函數(shù)為常數(shù)),使得對(duì)一切實(shí)數(shù)都成立,則稱為函數(shù)的一個(gè)承托函數(shù),給出如下命題:

①函數(shù)是函數(shù)的一個(gè)承托函數(shù);

②函數(shù)是函數(shù)的一個(gè)承托函數(shù);

③若函數(shù)是函數(shù)的一個(gè)承托函數(shù),則的取值范圍是

④值域是的函數(shù)不存在承托函數(shù).

其中正確的命題的個(gè)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知側(cè)棱垂直于底面的四棱柱中, , , ,

(1)若是線段上的點(diǎn)且滿足,求證:平面平面;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:以點(diǎn) 為圓心的圓與軸交于點(diǎn)、,與軸交于點(diǎn)、,其中為原點(diǎn).

)求證: 的面積為定值.

)設(shè)直線與圓交于點(diǎn)、,若,求:圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x,
(1)求f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x 時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2+bx+c圖象上的點(diǎn)P(1,m)處的切線方程為y=﹣3x+1
(1)若函數(shù)f(x)在x=﹣2時(shí)有極值,求f(x)的表達(dá)式.
(2)若函數(shù)f(x)在區(qū)間[﹣2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案