【題目】已知直線:,點

(1)求點關于直線的對稱點的坐標;

(2)直線關于點對稱的直線的方程;

(3)以為圓心,3為半徑長作圓,直線過點,且被圓截得的弦長為,求直線的方程.

【答案】(1);(2);(3).

【解析】

(1)設點,由關于直線對稱,列出方程,解得,得到點的坐標;

(2)設是直線上任意一點,則點關于點的對稱點在直線,用代入法可求得直線的方程;

(3)用垂徑定理將弦長為,轉化為圓心到直線的距離為,設出直線的方程,用點到直線的距離公式求解,注意考慮直線斜率不存在時是否符合題意.

解:(1)設點,則,解得:

即點關于直線的對稱點的坐標為.

(2)設是直線上任意一點,

則點關于點的對稱點在直線上,

所以,即

(3)設圓心到直線的距離為,直線被圓截得的弦長為,

因此,

當直線斜率不存在時,不滿足條件;

當直線斜率存在時,設其方程為,則,

解得,

綜上,直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,

(1)若,且存在單調遞減區(qū)間,求實數(shù)的取值范圍;

(2)設函數(shù)的圖象與函數(shù)的圖象交于點, ,過線段的中點作軸的垂線分別交, 于點, ,證明: 在點處的切線與在點處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于回歸分析的說法中錯誤的有( )

(1). 殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預報精確度越高.

(2). 回歸直線一定過樣本中心。

(3). 兩個模型中殘差平方和越小的模型擬合的效果越好

(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些整數(shù)染成紅色,先染1;再染3個偶數(shù)2,4,6;再染6后面最鄰近的5個連續(xù)奇數(shù)7,9,11,13,15;再染15后面最鄰近的7個連續(xù)偶數(shù)16,18,20,22,24,26,28;再染此后最鄰近的9個連續(xù)奇數(shù)29,31,…,45;按此規(guī)則一直染下去,得到一紅色子數(shù)列:1,2,4,6,7,9,11,13,15,16,……,則在這個紅色子數(shù)列中,由1開始的第2019個數(shù)是( )

A. 3972 B. 3974 C. 3991 D. 3993

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某食品廠生產的面包中抽取個,測量這些面包的一項質量指標值,由測量結果得如下頻數(shù)分布表:

質量指標值分組

頻數(shù)

(1)在相應位置上作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計這種面包質量指標值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該食品廠生產的這種面包符合“質量指標值不低于的面包至少要占全部面包的規(guī)定?”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數(shù)學名著,卷一《方田》中有如下兩個問題:

[三三]今有宛田,下周三十步,徑十六步.問為田幾何?

[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?

翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16.問這塊田面積是多少?

[三四]又有一扇形田,弧長99步,直徑長51.問這塊田面積是多少?

則下列說法正確的是(

A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為平方步

C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為平方步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,M、N分別是AB、BC的中點.

1)求證:MN∥平面A1B1C1D1

2)求證:平面B1MN⊥平面BB1D1D.

查看答案和解析>>

同步練習冊答案