已知點A和曲線上的點…、。若、…、成等差數(shù)列且公差d >0,(1). 試將d表示為n的函數(shù)關(guān)系式.(2). 若,是否存在滿足條件的.若存在,求出n可取的所有值,若不存在,說明理由.

可取8、9、10、11、12、、13、14這七個值


解析:

(1). ∵d>0,故為遞增數(shù)列  ∴最小,最大。  由方程是它的右焦點,L: 是它的右準線, ∴  

于是    ∴  - - - - - - - - - - -5分

(2) ∵     ∴  設(shè)    又∵ ∴取最大值14, 取最小值8.∴可取8、9、10、11、12、、13、14這七個值。- - - - - - - - -- - - - -9分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(選修4-4坐標系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M(k,l)、P(m,n),(klmn≠0)是曲線C上的兩點,點M、N關(guān)于x軸對稱,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),
(Ⅰ)用k、l、m、n分別表示xE和xF;
(Ⅱ)當曲線C的方程分別為:x2+y2=R2(R>0)、
x2
a2
+
y2
b2
=1(a>b>0)
時,探究xE•xF的值是否與點M、N、P的位置相關(guān);
(Ⅲ)類比(Ⅱ)的探究過程,當曲線C的方程為y2=2px(p>0)時,探究xE與xF經(jīng)加、減、乘、除的某一種運算后為定值的一個正確結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知點,曲線上的動點P到、的距離之差為6,則曲線方程為()

 A.                 B.

C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)選修1-1 2.2雙曲線練習(xí)卷(解析版) 題型:選擇題

已知點,曲線上的動點P到、的距離之差為6,則曲線方程為(。

A.

B.

C.

D. 

查看答案和解析>>

同步練習(xí)冊答案