【題目】已知數(shù)列滿足,其中, .

(1)求, , ,并猜想的表達式(不必寫出證明過程);

(2)設(shè),數(shù)列的前項和為,求證: .

(B)已知數(shù)列的前項和為,且滿足, .

(1)求, , , ,并猜想的表達式(不必寫出證明過程);

(2)設(shè), ,求的最大值.

【答案】(A)(1)詳見解析;(2)詳見解析. (B)(1)詳見解析;(2).

【解析】試題分析:(A)(1)利用的遞推關(guān)系得到,從而求得,由此猜想.(2)將的表達式代入,求得,用裂項求和法求得前項和.(B)利用,和的遞推關(guān)系,可求得的值,由此猜想.(2)利用,可求得的通項公式,代入并化簡,利用基本不等式可求得其最大值.

試題解析:

(A)解(1)由題意, , , ,

, , ,

猜想得: .

(2)由(1)得,

.

(B)解(1),

,得,

同理可得 ,

猜想: .

(2)由(1),時, ,

時, 滿足止式,

所以

, ,

設(shè),則有上為減函數(shù),在上為增函數(shù),

因為,且,

所以當時, 有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).

6

7

6

7

8

5

6

7

8

(1)試估計班學(xué)生人數(shù);

(2)從班和班抽出來的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,求甲的鍛煉時間大于乙的鍛煉時間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.

(1)求橢圓的方程;

(2)若分別是橢圓長軸的左、右端點,動點滿足,連結(jié),交橢圓于點,證明:為定值;

(3)在(2)的條件下,試問軸上是否存在異于點的定點,使得以為直徑的圓恒過直線的交點,若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點處的切線方程是.

(1)求的值;(2)求的單調(diào)區(qū)間;

(3)設(shè)(其中的導(dǎo)函數(shù))。證明:對任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)loga(ax2x1)(a0,a1)

(1) a,求函數(shù)f(x)的值域.

(2) f(x)在區(qū)間上為增函數(shù)時a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:某污水處理廠要在一個矩形污水處理池(的池底水平鋪設(shè)污水凈化管道(是直角頂點)來處理污水,管道越長污水凈化效果越好,設(shè)計要求管道的的接口的中點,分別落在線段上。已知米,米,記.

1試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;

2,求此時管道的長度;

3取何值時,污水凈化效果最好?并求出此時管道的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機從中抽取了100名選手進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有95%的把握認為選手成績“優(yōu)秀”與文化程度有關(guān)?

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù);

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6,在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在研究性學(xué)習(xí)中,關(guān)于三角形與三角函數(shù)知識的應(yīng)用(約定三內(nèi)角所對的邊分別是)得出如下一些結(jié)論:

1是鈍角三角形,則

(2)若是銳角三角形,則;

(3)在三角形中,若,則

(4)在中,若,則

其中錯誤命題的個數(shù)是 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案