(10分)已知函數(shù),且
(1)判斷的奇偶性,并證明;
(2)判斷在上的單調(diào)性,并用定義證明;
(3)若,求的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知函數(shù),
(1)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間()上存在一點(diǎn),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)求的值;
(3)若對(duì)于區(qū)間[3,4]上的每一個(gè)的值,不等式>恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為定義在上的奇函數(shù),當(dāng)時(shí),;
(1)求在上的解析式;
(2)試判斷函數(shù)在區(qū)間上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)f(x)=,
(1)判斷函數(shù)的奇偶性;(2)證明f(x)是R上的增函數(shù); (3)求該函數(shù)的值域;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間上的單調(diào)性并證明;
(3)利用(1)和(2)的結(jié)論,指出該函數(shù)在上的增減性.(不用證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖象,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)函數(shù)
(1)若,求的值域
(2)若在區(qū)間上有最大值14。求的值;
(3)在(2)的前題下,若,作出的草圖,并通過圖象求出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com