雙曲線的實軸長是虛軸長的2倍,則rn=
A.B.C.2D.4
D

試題分析:把雙曲線化為標準形式,所以,因為實軸長是虛軸長的2倍,所以。
點評:熟練判斷雙曲線方程中的的值,一般情況下,誰正誰就是,誰正焦點就在誰軸上。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設F1,F(xiàn)2分別是雙曲線的左、右焦點.若雙曲線上存在點A,使,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知的頂點、分別為雙曲線的左右焦點,頂點在雙曲線上,則的值等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經(jīng)過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點到雙曲線的漸近線的距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上, 點在上,且對角線過點,已知米,米.
(1)要使矩形的面積大于32平方米,則的長應在什么范圍內(nèi)?
(2)當的長度為多少時,矩形花壇的面積最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,拋物線的頂點為坐標原點,焦點軸上,準線與圓相切.

(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是曲線上的點,,則(   )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案