20.設(shè)x>0,y>0,z>0,xyz=1,求證:$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$≥$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$.

分析 利用柯西不等式證明.

解答 證明:∵xyz=1,
∴$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$=$\frac{z}{{x}^{2}}$+$\frac{x}{{y}^{2}}$+$\frac{y}{{z}^{2}}$,
由柯西不等式得:($\frac{z}{{x}^{2}}$+$\frac{x}{{y}^{2}}$+$\frac{y}{{z}^{2}}$)(xy+yz+xz)≥($\frac{\sqrt{xyz}}{x}$+$\frac{\sqrt{xyz}}{y}$+$\frac{\sqrt{xyz}}{z}$)2=($\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$)2,
∵xy+yz+xz=$\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{xz}{xyz}$=$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$,
∴$\frac{z}{{x}^{2}}$+$\frac{x}{{y}^{2}}$+$\frac{y}{{z}^{2}}$≥$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$,
即$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$≥$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$.

點(diǎn)評 本題考查了柯西不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={0,1,2},B={x|x2-5x+4<0},則A∩(∁RB)的真子集個(gè)數(shù)為( 。
A.1B.3C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11..圓C:x2+y2-2x-4y-20=0,直線l:(2m+1)x+(m+1)y-7m-4=0
(1)已知直線l過定點(diǎn)M,求定點(diǎn)M的坐標(biāo);
(2)求直線l被圓C截得的弦長最短時(shí)m的值以及最短長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(3,x),若$\overrightarrow{a}$•$\overrightarrow$=3,則x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.有100件產(chǎn)品編號從00到99,用系統(tǒng)抽樣方法從中抽取5件產(chǎn)品進(jìn)行檢驗(yàn),分組后每組按照相同的間隔抽取產(chǎn)品,若第5組抽取的產(chǎn)品編號為91,則第2組抽取的產(chǎn)品編號為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若$\frac{S_3}{S_2}=\frac{3}{2}$,則q的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象向右平移$\frac{π}{4}$個(gè)單位,所得函數(shù)圖象的一條對稱軸方程為( 。
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列關(guān)于命題的說法錯(cuò)誤的是( 。
A.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
B.命題“若隨機(jī)變量X~N(1,4),P(X≤0)=m,則P(0<X<2)=1-2m”為真命題
C.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
D.若命題P:?n∈N,2n>1000,則?P:?n∈N,2n>1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對于任意向量$\overrightarrow{a},\overrightarrow$,下列命題中正確的是( 。
A.若$\overrightarrow{a},\overrightarrow$滿足|$\overrightarrow{a}$|>|$\overrightarrow$|,且$\overrightarrow{a}$與$\overrightarrow$同向,則$\overrightarrow{a}$>$\overrightarrow$B.|$\overrightarrow{a}$+$\overrightarrow$|≤|$\overrightarrow{a}$|+|$\overrightarrow$|
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.|$\overrightarrow{a}$-$\overrightarrow$|≤|$\overrightarrow{a}$|-|$\overrightarrow$|

查看答案和解析>>

同步練習(xí)冊答案