設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205227944323.png" style="vertical-align:middle;" />,若存在非零實(shí)數(shù)使得對(duì)于任意,有,且f(x+l)≥f(x),則稱上的高調(diào)函數(shù).如果定義域是的函數(shù)上的高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是 [2,+∞)_
如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823205228272297.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),當(dāng)x≥0時(shí),,且上的高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是__________.
[-1,1]
(1)函數(shù)上的高調(diào)函數(shù),首先,時(shí),所以。同時(shí)有對(duì)任意恒成立;即對(duì)恒成立,也就是對(duì)恒成立。又,只需
恒成立,故,所以實(shí)數(shù)的取值范圍是。
(2)時(shí),,又函數(shù)式定義在R 上的奇函數(shù),所以
 其圖像如圖:

是由向左平移4個(gè)單位得到的;所以要使恒成立,需使
。解得,故實(shí)數(shù)的取值范圍是[-1,1]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(16分)已知函數(shù).
(1)判斷并證明的奇偶性;
(2)求證:
(3)已知a,b∈(-1,1),且,,求,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211848664299.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)若對(duì)任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)若f (x)為偶函數(shù),求實(shí)數(shù)a的值;
(2)若,當(dāng)時(shí)求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b(b為常數(shù)),則f(-1)=(  )
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),若為奇函數(shù),則_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的偶函數(shù)滿足:對(duì)任意的,有,則當(dāng)時(shí),有
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是定義在上的奇函數(shù),當(dāng)時(shí),為常數(shù)),則的值為
A.B.4C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是定義在R上的奇函數(shù),當(dāng)時(shí),,則 ______。

查看答案和解析>>

同步練習(xí)冊答案