【題目】已知函數(shù)

(1)若曲線在點(diǎn)處與直線相切,求的值;

(2)若曲線與直線有兩個(gè)不同交點(diǎn),求的取值范圍.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

試題分析:1)若曲線在點(diǎn)處與直線相切,則,進(jìn)而可得的值;(2)當(dāng)時(shí),曲線與直線最多只有一個(gè)交點(diǎn);若曲線與直線y=b 有兩個(gè)不同的交點(diǎn),則b>1.

試題解析:解:由,得

(1)因?yàn)榍在點(diǎn)處與直線相切,

所以,解得

(2)令,得的情況如下:

0

-

0

+

1

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,的最小值,當(dāng)時(shí),曲線與直線最多只有一個(gè)交點(diǎn);

當(dāng)時(shí),,

所以存在,使得

由于函數(shù)在區(qū)間上均單調(diào),所以當(dāng)時(shí)曲線與直線有且僅有兩個(gè)不同交點(diǎn).

綜上可知,如果曲線與直線有兩個(gè)不同交點(diǎn),那么的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)橢圓右頂點(diǎn)和上頂點(diǎn)的直線與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點(diǎn),過(guò)點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,設(shè)傾斜角為的直線為參數(shù)與曲線為參數(shù)相交于不同的兩點(diǎn)

1,求線段中點(diǎn)的坐標(biāo);

2,其中,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸, 建立平面直角坐標(biāo)系,在平面直角坐標(biāo)系中, 直線經(jīng)過(guò)點(diǎn),傾斜角

1寫出曲線直角坐標(biāo)方程和直線的參數(shù)方程;

2設(shè)與曲線相交于兩點(diǎn), 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績(jī)中,隨機(jī)抽取了名學(xué)生的成績(jī)得到頻率分布直方圖如下:

(1)若用分層抽樣的方法從分?jǐn)?shù)在的學(xué)生中共抽取人,該人中成績(jī)?cè)?/span>的有幾人?

(2)在(1)中抽取的人中,隨機(jī)抽取人,求分?jǐn)?shù)在人的概率.

(3)根據(jù)頻率分布直方圖,估計(jì)該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);

(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;

(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1的普通方程和的傾斜角;

2)設(shè)點(diǎn),交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1處取得極小值,的值;

2上恒成立,的取值范圍;

3求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘人常用小石子在沙灘上擺成各種形狀來(lái)研究數(shù),例如:

他們研究過(guò)圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是

A. 289 B. 1 024 C. 1 225 D. 1 378

查看答案和解析>>

同步練習(xí)冊(cè)答案