【題目】數(shù)列中,,且對任意的成等比數(shù)列,其公比為.
(1)若,求;
(2)若對任意的成等差數(shù)列,其公差為.設(shè).
①求證:成等差數(shù)列并指出其公差;
②若,試求數(shù)列的前項(xiàng)和.
【答案】(1);(2)①證明見解析,;②或.
【解析】
試題分析:(1)公比為,故是首相為,公比為的等比數(shù)列,,利用前項(xiàng)和公式求得前項(xiàng)和為;(2)①根據(jù)等差中項(xiàng),可有,利用取倒數(shù)的方法,配湊成等差數(shù)列,即,所以為等差數(shù)列;②由, 解得或,分成兩種情況,利用累乘法求得或.
試題解析:
(1)因?yàn)?/span>,所以,故是首項(xiàng)為,公比為的等比數(shù)列,所以 .
(2)①因?yàn)?/span>成等差數(shù)列, 所以,而,則, 得, 所以, 即, 所以是等差數(shù)列; 且公差為是等差數(shù)列,且公差為 .
②因?yàn)?/span>,所以,則由, 解得或.(i)當(dāng)時,, 所以,則,即,得, 所以,則,所以,則, 故 .(ii)當(dāng)時,,所以, 則, 即,得, ,則所以,則 ,從而,故綜上所述,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口北偏西且與該港口相距20海里的處,并以30海里/時的航行速度沿正東方向勻速行駛,假設(shè)該小船沿直線方向以海里/時的航行速度勻速行駛,經(jīng)過小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)假設(shè)小艇的最高航行速度只能達(dá)到30海里/時,試設(shè)計(jì)航行方案(即確定航行方向與航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園有一塊邊長為2的等邊三角形的地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分, 在上, 在上.
(1)設(shè), ,請將表示為的函數(shù),并求出該函數(shù)的定義域;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短, 的位置應(yīng)在哪里?如果是參觀線路,則希望它最長, 的位置又應(yīng)在哪里?請予以說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某初級中學(xué)有三個年級,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.
(1)求z的值;
(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任選2名學(xué)生,求至少有1名女生的概率;
(3)用隨機(jī)抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測驗(yàn)中,有6位同學(xué)的平均成績?yōu)?5分, 用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?/span>
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學(xué)的成績x6,及這6位同學(xué)成績的標(biāo)準(zhǔn)差s;
(2)從前5位同學(xué)中選2位同學(xué),求恰有1位同學(xué)成績在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)的圖像上.
(I)求數(shù)列的首項(xiàng)和通項(xiàng)公式;
(II)若數(shù)列滿足,求數(shù)列的前項(xiàng)和;
(III)已知數(shù)列滿足.若對任意,存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中, .等比數(shù)列的通項(xiàng)公式.
(I)求數(shù)列的通項(xiàng)公式;
(II)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個,從中任取一球,取了10次有7個白球,估計(jì)袋中數(shù)量最多的是________球.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校調(diào)查了20名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是,樣本數(shù)據(jù)分組為,,,,.
(1)求直方圖中的值;
(2)從每周自習(xí)時間在的受調(diào)查學(xué)生中,隨機(jī)抽取2人,求恰有1人的每周自習(xí)時間在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com