【題目】已知等差數(shù)列{an}中,a1=1,且a1 , a2 , a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn;
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,∵a1=1,且a1,a2,a4+2成等比數(shù)列.

=a1(a4+2),即(1+d)2=1×(1+3d+2),解得d=2或﹣1.

其中d=﹣1時(shí),a2=0,舍去.

∴d=2,可得an=1+2(n﹣1)=2n﹣1.

Sn= =n2


(2)解: =

∴當(dāng)n為偶數(shù)時(shí), = =16.當(dāng)n為奇數(shù)時(shí), = =

∴數(shù)列{bn}的奇數(shù)項(xiàng)是以 為首項(xiàng), 為公比的等比數(shù)列;偶數(shù)項(xiàng)是以8為首項(xiàng),16為公比的等比數(shù)列.

∴數(shù)列{bn}的前2n項(xiàng)和T2n=(b1+b3+…+b2n1)+(b2+b4+…+b2n

= +

= (16n﹣16n).


【解析】(1)設(shè)等差數(shù)列{an}的公差為d,由a1=1,且a1,a2,a4+2成等比數(shù)列.可得: =a1(a4+2),即(1+d)2=1×(1+3d+2),解得d.經(jīng)過驗(yàn)證可得d,再利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.(2) = .當(dāng)n為偶數(shù)時(shí), = =16.當(dāng)n為奇數(shù)時(shí), = = .可得數(shù)列{bn}的奇數(shù)項(xiàng)是以 為首項(xiàng), 為公比的等比數(shù)列;偶數(shù)項(xiàng)是以8為首項(xiàng),16為公比的等比數(shù)列.利用求和公式即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,動(dòng)點(diǎn)P在其表面上運(yùn)動(dòng),且|PA|=x,把點(diǎn)的軌跡長度L=f(x)稱為“喇叭花”函數(shù),給出下列結(jié)論: ① ;② ;③ ;④
其中正確的結(jié)論是: . (填上你認(rèn)為所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市擬在長為8km的道路OP的一側(cè)修建一條運(yùn)動(dòng)賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0)x∈[0,4]的圖象,且圖象的最高點(diǎn)為 ;賽道的后一部分為折線段MNP,為保證參賽運(yùn)動(dòng)員的安全,限定∠MNP=120°
(1)求A,ω的值和M,P兩點(diǎn)間的距離;
(2)應(yīng)如何設(shè)計(jì),才能使折線段賽道MNP最長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點(diǎn).

(1)求證:BD⊥EG;
(2)求平面DEG與平面DEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x﹣2);當(dāng)0≤x≤1時(shí),f(x)= ,則f(1)+f(2)+f(3)+…+f等于(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的定義域是(
A.[﹣2,2]
B.(﹣∞,﹣2]∪[2,+∞)
C.(﹣2,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合,且橢圓的離心率是 ,如圖所示.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)拋物線的準(zhǔn)線與橢圓在第二象限相交于點(diǎn)A,過點(diǎn)A作拋物線的切線l,l與橢圓的另一個(gè)交點(diǎn)為B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f﹣1(x),若g(x)= 為奇函數(shù),則f﹣1(x)=2的解為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓 為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼? 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系, 求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案