(14分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.

已知(其中為自然對數(shù)的底數(shù)).

(1)求的極值;

(2) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

解析:(1) , . 

時,

時,,此時函數(shù)遞減;

 當時,,此時函數(shù)遞增;

∴當時,取極小值,其極小值為

(2)解法一:由(1)可知函數(shù)的圖象在處有公共點,

因此若存在的隔離直線,則該直線過這個公共點.

設(shè)隔離直線的斜率為,則直線方程為,即

,可得時恒成立

, ,得

下面證明時恒成立.令,

,

時,

時,,此時函數(shù)遞增;

時,,此時函數(shù)遞減;

∴當時,取極大值,其極大值為

從而,即恒成立.

 ∴函數(shù)存在唯一的隔離直線

解法二: 由(1)可知當時, (當且當時取等號) .

若存在的隔離直線,則存在實常數(shù),使得恒成立,

,則

,即.后面解題步驟同解法一.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(09年長沙一中第八次月考理)(13分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).

(Ⅰ)求的極值;

        (Ⅱ) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學知識,推斷間的隔離直線方程為                  .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知(其中為自然對數(shù)的底數(shù)).

(1)求的極值;

(2) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建漳州高二下學期期中考試理數(shù)學卷(解析版) 題型:解答題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,為自然對數(shù)的底數(shù)).

(Ⅰ)求的極值;

(Ⅱ)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三一輪復(fù)習質(zhì)量檢測理科數(shù)學 題型:解答題

(14分)若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)).

(1)求的極值;

(2) 函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案