年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中N*,aR,e是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意N*,均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間(1,4)內(nèi),另一個(gè)在區(qū)間[1,4]外,求a的取值范圍;
(3)已知k,mN*,k<m,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說(shuō)明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對(duì)于給定的實(shí)數(shù)成立.求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求滿(mǎn)足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求證:f′>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(其中為常數(shù)且)在處取得極值.
(I) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(II) 若在上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=lnx-ax(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a>0時(shí),求函數(shù)f(x)在[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=x+ax2+bln x,曲線y=f(x)過(guò)點(diǎn)
P(1,0),且在P點(diǎn)處的切線的斜率為2.
①求a,b的值;
②證明:f(x)≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知f(x)=x+,h(x)=,設(shè)F(x)=f(x)-h(x),求F(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)試問(wèn)函數(shù)f(x)能否在x=-1時(shí)取得極值?說(shuō)明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時(shí),函數(shù)f(x)與g(x)的圖象有兩個(gè)公共點(diǎn),求c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com