(2012•福建)已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0.
其中正確結(jié)論的序號(hào)是( 。
分析:根據(jù)f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,確定函數(shù)的極值點(diǎn)及a、b、c的大小關(guān)系,由此可得結(jié)論.
解答:解:求導(dǎo)函數(shù)可得f′(x)=3x2-12x+9=3(x-1)(x-3)
∵a<b<c,且f(a)=f(b)=f(c)=0.
∴a<1<b<3<c
設(shè)f(x)=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+ac+bc)x-abc
∵f(x)=x3-6x2+9x-abc
∴a+b+c=6,ab+ac+bc=9
∴b+c=6-a
∴bc=9-a(6-a)<(
6-a
2
)
2

∴a2-4a<0
∴0<a<4
∴0<a<1<b<3<c
∴f(0)<0,f(1)>0,f(3)<0
∴f(0)f(1)<0,f(0)f(3)>0
故選C.
點(diǎn)評(píng):本題考查函數(shù)的零點(diǎn)、極值點(diǎn),考查解不等式,綜合性強(qiáng),確定a、b、c的大小關(guān)系是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)已知集合M={1,2,3,4},N={-2,2},下列結(jié)論成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)已知函數(shù)f(x)=ex+ax2-ex,a∈R.
(Ⅰ)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)試確定a的取值范圍,使得曲線(xiàn)y=f(x)上存在唯一的點(diǎn)P,曲線(xiàn)在該點(diǎn)處的切線(xiàn)與曲線(xiàn)只有一個(gè)公共點(diǎn)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)已知函數(shù)f(x)=axsinx-
3
2
(a∈R)
,且在[0,
π
2
]
上的最大值為
π-3
2
,
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)已知向量
a
=(x-1,2),
b
=(2,1),則
a
b
的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•福建)已知雙曲線(xiàn)
x2
4
-
y2
b2
 =1
的右焦點(diǎn)與拋物線(xiàn)y2=12x的焦點(diǎn)重合,則該雙曲線(xiàn)的焦點(diǎn)到其漸近線(xiàn)的距離等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案