已知點A(-1,1),B(2,y),向量
a
=(1,2),若
AB
a
,則實數(shù)y=
 
考點:平面向量共線(平行)的坐標表示
專題:平面向量及應用
分析:利用向量的坐標運算、向量共線定理即可得出.
解答: 解:
AB
=(3,y-1),
∵向量
a
=(1,2),
AB
a
,
∴y-1-6=0,
解得y=7.
故答案為:7.
點評:本題考查了向量的坐標運算、向量共線定理,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若集合A={x|x2-2x-3=0},B={x|ax-1=0},若B
?
A,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
 
(寫序號)
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”:
②函數(shù)f(x)=cos2ax-sin2ax的最小正周期為“π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:-2≤x≤11,q:1-3m≤x≤3+m(m>0),若?p是?q的必要不充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:
(1)0.027-
1
3
-(-
1
6
)-2+2560.75-
1
3
+π0
;
(2)lo
g
9
4
-log2
3
32
+2log23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:2x-y+1=0,直線l2過點(1,1)傾斜角為直線l1的傾斜角的兩倍,則直線l2的方程為(  )
A、4x+3y-7=0
B、4x+3y+1=0
C、4x-y-3=0
D、4x-y+5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)z滿足(2+i)z=-3+i,則z=( 。
A、2+iB、2-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足an+12=4Sn+4n-3,且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,(Tn+
3
2
)k≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4)且k∈R個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關系式近似為y=k•f(x),其中y=
4(
16
9-x
-1) 
 
,0≤x≤5
4(11-
2
45
x2),5<x≤16
.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(Ⅰ)若投放k個單位的洗衣液,3分鐘時水中洗衣液的濃度為4(克/升),求k的值;
(Ⅱ)若投放4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

同步練習冊答案