【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 ;在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C的極坐標方程為
(1)若a=1,求C與l交點的直角坐標;
(2)若C上的點到l的距離的最大值為,求a.
【答案】(1)(2).
【解析】分析:(1)曲線的極坐標方程化簡后,利用 即可得曲線的直角坐標方程,將直線的參數(shù)方程化為普通方程,聯(lián)立解方程即可的結(jié)果;(2)設(shè)上的點,由點到直線距離公式、利用輔助角公式,根據(jù)三角函數(shù)的有界性列方程求解,從而可得結(jié)果.
詳解:(1)曲線C的普通方程為
當a=1時,直線l的普通方程為x+y-2=0.
由
解得或
從而C與l的交點坐標是.
(2)直線l的普通方程是x+y-1-a=0,故C上的點(2cos θ,sin θ)到l的距離為
當a≥-1時,d的最大值為 .
由題設(shè)得,所以
當a<-1時,d的最大值為.
由題設(shè)得,所以.
綜上,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當時,,現(xiàn)已畫出函數(shù)在y軸左側(cè)的圖象,如圖所示,請根據(jù)圖象.
(1)將函數(shù)的圖象補充完整,并寫出函數(shù)的遞增區(qū)間;
(2)寫出函數(shù)的解析式;
(3)若函數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校20名同學(xué)的數(shù)學(xué)和英語成績?nèi)缦卤硭荆?/span>
將這20名同學(xué)的兩顆成績繪制成散點圖如圖:
根據(jù)該校以為的經(jīng)驗,數(shù)學(xué)成績與英語成績線性相關(guān).已知這名學(xué)生的數(shù)學(xué)平均成績?yōu)?/span>,英語平均成績,考試結(jié)束后學(xué)校經(jīng)過調(diào)查發(fā)現(xiàn)學(xué)號為的同學(xué)與學(xué)號為的同學(xué)(分別對應(yīng)散點圖中的)在英語考試中作弊,故將兩位同學(xué)的兩科成績?nèi)∠?/span>.
取消兩位作弊同學(xué)的兩科成績后,求其余同學(xué)的數(shù)學(xué)成績與英語成績的平均數(shù);
取消兩位作弊同學(xué)的兩科成績后,求數(shù)學(xué)成績x與英語成績y的線性回歸直線方程,并據(jù)此估計本次英語考試學(xué)號為8的同學(xué)如果沒有作弊的英語成績.(結(jié)果保留整數(shù))
附:位同學(xué)的兩科成績的參考數(shù)據(jù):
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關(guān)系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):
日期 | 1月11號 | 1月12號 | 1月13號 | 1月14號 | 1月15號 |
平均氣溫() | 9 | 10 | 12 | 11 | 8 |
銷量(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程式;
(3)根據(jù)(2)所得的線性回歸方程,若天氣預(yù)報1月16號的白天平均氣溫為,請預(yù)測該奶茶店這種飲料的銷量.
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當時,若方程有兩個不相等的實根, ,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在統(tǒng)計學(xué)中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進行偏差分析,決定從全班40位同學(xué)中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如表:
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為120分,物理平均分為92,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.
參考公式: ,
參考數(shù)據(jù): ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓的圓心為A,直線過點B(1,0)且與軸不重合,交圓A于C,D兩點,過B作AC的平行線交AD于點E.
(Ⅰ)證明:為定值,并寫出點E的軌跡方程;
(Ⅱ)設(shè)點E的軌跡為曲線C1,直線交C1于M,N兩點,過B且與垂直的直線與C1交于P,Q兩點, 求證:是定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左右焦點分別為,,離心率為.若點為橢圓上一動點,的內(nèi)切圓面積的最大值為.
(1)求橢圓的標準方程;
(2)過點作斜率為的動直線交橢圓于兩點,的中點為,在軸上是否存在定點,使得對于任意值均有,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com