15.已知點(diǎn)P(cosθ,sinθ)在直線y=2x上,則sin2θ+cos2θ=$\frac{1}{5}$.

分析 由點(diǎn)P(cosθ,sinθ)在直線y=2x上,將P坐標(biāo)代入直線方程,利用同角三角函數(shù)間的基本關(guān)系求出tanθ的值,將所求式子利用同角三角函數(shù)間的基本關(guān)系化簡后,把tanθ的值代入即可求出值.

解答 解:∵點(diǎn)P(cosθ,sinθ)在直線y=2x上,
∴tanθ=2,
∴sin2θ+cos2θ=2sinθcosθ+cos2θ-sin2θ
=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$+$\frac{co{s}^{2}θ-si{n}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{ta{n}^{2}θ+1}$+$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$
=$\frac{4}{5}+\frac{1-4}{1+4}$=$\frac{1}{5}$.
故答案為:$\frac{1}{5}$.

點(diǎn)評 此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,平行四邊形ABCD中,AB⊥BD,DE⊥BC,∠A=60°,將△ABD,△DCE分別沿BD,DE折起,使AB∥CE.
(1)求證:AB⊥BE;
(2)若四棱錐D-ABEC的體積為$\frac{3\sqrt{3}}{2}$,求CE長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點(diǎn)M(x,y)的坐標(biāo)滿足$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,N(-2,1),點(diǎn)O為坐標(biāo)原點(diǎn),則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知D是△ABC中邊BC上的中點(diǎn),若$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,則$\overrightarrow{AD}$=( 。
A.$\overrightarrow a$+$\overrightarrow b$B.$\frac{1}{2}$($\overrightarrow a$+$\overrightarrow b$)C.$\overrightarrow a$-$\overrightarrow b$D.$\frac{1}{2}$($\overrightarrow a$-$\overrightarrow b$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若f(x)=Asinωx(A>0,ω>0)的部分圖象.
(1)求A,ω的值;
(2)求函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:x,y∈R,x2+y2<2,命題q:x,y∈R,|x|+|y|<2,則p是q的什么條件( 。
A.充分非必要條件B.必要非充分條件
C.必要充分條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}的前n項和為Sn,且an+Sn=4(n∈N*).
(Ⅰ)求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)是否存在正整數(shù)k,使$\frac{{S}_{k+1}-2}{{S}_{k}-2}$>2成立?若存在,求出正整數(shù)k,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0,b>0,且a+b=1,則$\frac{1}{a}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.比較下列各組中兩個代數(shù)式的大。
(1)x2-x與x-2;
(2)已知a,b為正數(shù),且a≠b比較a3+b3與a2b+ab2的大。

查看答案和解析>>

同步練習(xí)冊答案