在區(qū)間[0,1]內(nèi)任取兩個實數(shù),則這兩個實數(shù)的和大于
1
3
的概率為(  )
A、
2
9
B、
7
9
C、
1
18
D、
17
18
考點:幾何概型
專題:概率與統(tǒng)計
分析:由題意,本題符合幾何概型的概率求法,所以只要求出區(qū)域面積以及滿足條件的區(qū)域面積,由幾何概型的公式解答即可.
解答: 解:設(shè)x,y∈[0,1],作出不等式組
0≤x≤1
0≤y≤1
x+y>
1
3
所表示的平面區(qū)域,如圖
由幾何概型知,所求概率P=
1-
1
2
×
1
3
×
1
3
1×1
=
17
18

故選D.
點評:本題考查了幾何概型公式的運用;當總體個數(shù)有無限多時的概率問題為幾何概型,若事件與兩個變量有關(guān)時,可歸結(jié)為面積問題進行解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知cosα=-
3
5
,α∈(π,
2
),則sin(π-α)=(  )
A、-
3
5
B、
3
5
C、-
4
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍;
(2)當a=1且k∈z時,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,橢圓C1的方程為
x2
a2
+
y2
b2
=1,雙曲線C2的方程為
x2
a2
-
y2
b2
=1,C1與C2的離心率之積為
15
4
,則C2的漸近線方程為( 。
A、x±2y=0
B、2x±y=0
C、x±4y=0
D、4x±y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若在x∈[0,
π
2
]上,有兩個不同的實數(shù)值滿足方程cos2x+
3
sin2x=k+1,則k的取值范圍是( 。
A、[-2,1]
B、[-2,1)
C、[0,1]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,且Sn=2an-1,設(shè)bn=2(log2an+1),n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn•an}的前n項和Tn;
(3)證明:對于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方形OABC內(nèi)任取一點,取到函數(shù)y=x的圖象與x軸正半軸之間(陰影部分)的點的概率等于( 。
A、
1
3
B、
1
2
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.則家庭的月儲蓄y對月收入x的線性回歸方程為
 

(附:線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
y
n
i=1
xi2-n
x
2
,a=
.
y
-b
.
x
,其中
.
x
,
.
y
為樣本平均值,線性回歸方程也可寫為
.
y
=
.
b
x+
.
a
.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-1的圖象上一點(1,1)及鄰近一點(1+△x,f(1+△x)),則
△y
△x
等( 。
A、4
B、4+2△x
C、4+2(△x)2
D、4x

查看答案和解析>>

同步練習冊答案