某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金也不超過投資收益的20%,并用函數(shù)模型模擬這一獎(jiǎng)勵(lì)方案.

(I)試寫出模擬函數(shù)所滿足的條件;

(II)試分析下列兩個(gè)函數(shù)模型是否符合獎(jiǎng)勵(lì)方案的要求?并說明你的理由.

   ① ,     ②

解:(I)由題意,模擬函數(shù)滿足的條件是:

(1)上是增函數(shù);(2);(3)

(II)對(duì)于① ,

當(dāng)時(shí),,即,

,∴不符合條件(2):,即函數(shù)模型不符合獎(jiǎng)勵(lì)方案的要求;

對(duì)于②,顯然它在上是增函數(shù),滿足條件(1),

又當(dāng)時(shí),,即,從而滿足條件(2),

下面證明:,即對(duì)于恒成立.

,則

,∴,∴,而

,∴對(duì)于恒成立.

上是減函數(shù).

∴當(dāng)時(shí),,

,即對(duì)于恒成立.從而滿足條件(3).

故函數(shù)模型符合獎(jiǎng)勵(lì)方案的要求.

綜上,兩個(gè)函數(shù)中只有第②個(gè)函數(shù)符合獎(jiǎng)勵(lì)方案要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金也不超過投資收益的20%,并用函數(shù)y=f(x)模擬這一獎(jiǎng)勵(lì)方案.
(Ⅰ)試寫出模擬函數(shù)y=f(x)所滿足的條件;
(Ⅱ)試分析函數(shù)模型y=4lgx-3是否符合獎(jiǎng)勵(lì)方案的要求?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省泰安市高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金也不超過投資收益的20%,并用函數(shù)y= f(x)模擬這一獎(jiǎng)勵(lì)方案.

(Ⅰ)試寫出模擬函數(shù)y= f(x)所滿足的條件;

(Ⅱ)試分析函數(shù)模型y= 4lgx-3是否符合獎(jiǎng)勵(lì)方案的要求?并說明你的理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省莆田四中高三(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金也不超過投資收益的20%,并用函數(shù)y=f(x)模擬這一獎(jiǎng)勵(lì)方案.
(Ⅰ)試寫出模擬函數(shù)y=f(x)所滿足的條件;
(Ⅱ)試分析函數(shù)模型y=4lgx-3是否符合獎(jiǎng)勵(lì)方案的要求?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省泰安市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬元~1000萬元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金也不超過投資收益的20%,并用函數(shù)y=f(x)模擬這一獎(jiǎng)勵(lì)方案.
(Ⅰ)試寫出模擬函數(shù)y=f(x)所滿足的條件;
(Ⅱ)試分析函數(shù)模型y=4lgx-3是否符合獎(jiǎng)勵(lì)方案的要求?并說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案