【題目】在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n﹣1}的前n項(xiàng)和為Sn .
(1)求Sn;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 若a2 , a5 , am成等比數(shù)列,求Tm .
【答案】
(1)解:∵在等差數(shù)列{an}中,a3+a4=12,公差d=2,
∴(a1+2×2)+(a1+3×2)=12,
解得a1=1,
∴an=1+(n﹣1)×2=2n﹣1.
∵數(shù)列{a2n﹣1}的前n項(xiàng)和為Sn,
a2n﹣1=2(2n﹣1)﹣1=4n﹣3,
∴{a2n﹣1}是1為首項(xiàng),4為公差的等差數(shù)列,
∴ =2n2﹣n.
(2)∵a2,a5,am成等比數(shù)列,∴ ,
∴3(2m﹣1)=92,
解得m=14.
∵ = = ( ),
∴Tm=T14= (1﹣ +…+ )
= = .
【解析】(1)根據(jù)等差數(shù)列的性質(zhì),結(jié)合a3+a4=12可得到a1=1,不難寫出an的通項(xiàng)公式,再表示出a2n﹣1的通項(xiàng)公式,可知道其為等差數(shù)列,再根據(jù)等差數(shù)列前n項(xiàng)和可得結(jié)果,(2)由a2,a5,am成等比數(shù)列可得,解出m=14,再表示出Tm,裂項(xiàng)求和可得Tm的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x= a上的任意一點(diǎn),且( + ) =2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動(dòng)直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項(xiàng)和,a1 , a2 , a5成等比數(shù)列.
(Ⅰ)證明S1 , S3 , S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合U={1,2,…,100},TU.對(duì)數(shù)列{an}(n∈N*),規(guī)定:
①若T=,則ST=0;
②若T={n1 , n2 , …,nk},則ST=a +a +…+a .
例如:當(dāng)an=2n,T={1,3,5}時(shí),ST=a1+a3+a5=2+6+10=18.
已知等比數(shù)列{an}(n∈N*),a1=1,且當(dāng)T={2,3}時(shí),ST=12,求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的離心率為 ,左焦點(diǎn)為F(﹣1,0),過(guò)點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在y軸上,是否存在定點(diǎn)E,使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=2cosθ+2sinθ(0≤θ<2π),點(diǎn)M(1, ),以極點(diǎn)O為原點(diǎn),以極軸為x軸的正半軸建立平面直角坐標(biāo)系.已知直線l: (t為參數(shù))與曲線C交于A,B兩點(diǎn),且|MA|>|MB|.
(1)若P(ρ,θ)為曲線C上任意一點(diǎn),求ρ的最大值,并求此時(shí)點(diǎn)P的極坐標(biāo);
(2)求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.
(1)證明:平面ACP⊥平面ABC;
(2)若E為棱PB與P不重合的點(diǎn),且AE⊥CE,求AE與平面ABC所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】所謂正三棱錐,指的是底面為正三角形,頂點(diǎn)在底面上的射影為底面三角形中心的三棱錐,在正三棱錐 中, 是 的中點(diǎn),且 ,底面邊長(zhǎng) ,則正三棱錐 的體積為 , 其外接球的表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com