已知集合A={y|y=log2x,x>1},B={y|y=(
1
2
)x,x>1}
,則(∁RA)∪B=(  )
A、{y|y<
1
2
}
B、{y|y≤0或y>1}
C、{y|
1
2
<y<1}
D、R
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:根據(jù)對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性解出集合A,B,然后進(jìn)行補(bǔ)集、并集的運(yùn)算即可.
解答: 解:x>1,則log2x>0,0<(
1
2
)x
1
2
,∴A={y|y>0},B={y|0<y<
1
2
};
(RA)∪B={y|y≤0}∪{y|0<y<
1
2
}
={y|y<
1
2
}

故選:A.
點(diǎn)評:考查對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性,描述法表示集合,集合的補(bǔ)集、并集的運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x>1,則
2x2-4x+4
x-1
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中
12(-2)4
=
3-2

39
=
33

③正數(shù)的n次方根有兩個(gè)      
④a的n次方根就是
na

nan
=a

(
na
)n=a

正確的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量X~N(1,4),且P(X≤a)=P(X>2),則實(shí)數(shù)a的值為( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x的不等式|x-1|+|x-a|≤a-1的解集為空集∅,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sinA+cosA=
1
5
,則△ABC為
 
三角形(在“銳角”、“直角”、“鈍角”中,選擇恰當(dāng)?shù)囊环N填空).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=(
2
2x+a
-1)是奇函數(shù).
(1)求a的值;
(2)用單調(diào)性的定義證明f(x)在(-∞,+∞)上為減函數(shù);
(3)若實(shí)數(shù)m滿足f(1-2m)+f(
2m
3
+1)≤0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,直線x=t(t>0,且t≠1)與拋物線交于A,B兩點(diǎn)(點(diǎn)A在第一象限),定點(diǎn)Q的坐標(biāo)為(-1,0),直線QA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)M.
(1)求證:點(diǎn)M,F(xiàn),B三點(diǎn)共線;
(2)當(dāng)2≤t≤3時(shí),求
|MA|
|MB|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一直線上有一點(diǎn)在已知平面外,則下列結(jié)論中正確的是( 。
A、直線與平面平行
B、直線與平面相交
C、直線上至少有一個(gè)點(diǎn)在平面內(nèi)
D、直線上有無數(shù)多個(gè)點(diǎn)都在平面外

查看答案和解析>>

同步練習(xí)冊答案