【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(I)求直方圖中的值;
(II)求月平均用電量的眾數(shù)和中位數(shù);
(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標原點的橢圓經(jīng)過點,且點為其右焦點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在平行于的直線,使得直線與橢圓有公共點,且直線與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為且滿足,數(shù)列中,對任意正整數(shù)
(1)求數(shù)列的通項公式;
(2)是否存在實數(shù),使得數(shù)列是等比數(shù)列?若存在,請求出實數(shù)及公比的值,若不存在,請說明理由;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù));在以原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(I)求曲線的極坐標方程和曲線的直角坐標方程;
(II)若射線與曲線,的交點分別為(異于原點),當(dāng)斜率時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切.
(1)求圓的方程;
(2)過點的直線截圓所得弦長為,求直線的方程;
(3)設(shè)圓與軸的負半抽的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,證明:直線過定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標準地震”的振幅(使用標準地震振幅是為了修正測震儀距實際震中的距離造成的偏差)。
(1)假設(shè)在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標準地震的振幅是0.001,計算這次地震的震級(精確到0.1);
(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?
(以下數(shù)據(jù)供參考:, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐P-ABC中,∠ACB=90°,CB=4,AB=20,D為AB中點,M為PB中點,且△PDB是正三角形,PA⊥PC。
.
(1)求證:DM∥平面PAC;
(2)求證:平面PAC⊥平面ABC;
(3)求三棱錐M-BCD的體積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com