【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?
【答案】(1)0.0075;(2)眾數(shù)是230,中位數(shù)是224;(3)5戶
【解析】試題分析:
(1)利用頻率分布直方圖小長方形的面積之和為1可得x=0.0075;
(2)結(jié)合所給的數(shù)據(jù)可得:月平均用電量的眾數(shù)和中位數(shù)為,224;
(3)結(jié)合頻率分布直方圖和分層抽樣的概念可得月平均用電量在[220,240)的用戶中應(yīng)抽取5戶.
試題解析:
(Ⅰ)由直方圖的性質(zhì),可得
(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1
得:x=0.0075,所以直方圖中x的值是0.0075.
(Ⅱ)月平均用電量的眾數(shù)是.
因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),
設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,
解得:a=224,
所以月平均用電量的中位數(shù)是224.
(Ⅲ)月平均用電量為[220,240]的用戶有0.0125×20×100=25(戶),月平均用電量為[240,260)的用戶有0.0075×20×100=15(戶),月平均用電量為[260,280)的用戶有:
0.005×20×100=10(戶),
抽取比例,所以月平均用電量在[220,240)的用戶中應(yīng)抽取(戶).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的定義域為 ,若對于任意的 , ,都有 ,且當 時,有 .
(1)證明: 為奇函數(shù);
(2)判斷 在 上的單調(diào)性,并證明;
(3)設(shè) ,若 ( 且 )對 恒成立,求實數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,圓的直角坐標方程為,直線的參數(shù)方程為(為參數(shù)),射線的極坐標方程為.
(1)求圓和直線的極坐標方程;
(2)已知射線與圓的交點為,與直線的交點為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】祖暅(公元前5-6世紀),祖沖之之子,是我國齊梁時代的數(shù)學家. 他提出了一條原理:“冪勢既同,則積不容異. ”這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體的體積相等. 該原理在西方直到十七世紀才由意大利數(shù)學家卡瓦列利發(fā)現(xiàn),比祖暅晚一千一百多年. 橢球體是橢圓繞其軸旋轉(zhuǎn)所成的旋轉(zhuǎn)體. 如圖將底面直徑皆為,高皆為的橢半球體及已被挖去了圓錐體的圓柱體放置于同一平面上. 以平行于平面的平面于距平面任意高處可橫截得到及兩截面,可以證明知總成立. 據(jù)此,短軸長為,長軸為的橢球體的體積是 __________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標準完成高峰論壇會議期間的志愿服務(wù)工作,將從27所北京高校招募大學生志愿者,某調(diào)查機構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計,得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計 | |
男 | 40 | ||
女 | 5 | ||
總計 | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個女同學中,3個是大學三年級同學,2個是大學四年級同學.現(xiàn)從這5個同學中隨機選2同學進行進一步調(diào)查,求這2個同學是同年級的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某電子公司開發(fā)一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質(zhì)量和技術(shù)含金量提高,市場分析的結(jié)果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進工藝后電子公司銷售該配件的月平均利潤是(元).
(1)寫出與的函數(shù)關(guān)系式;
(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x (℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: ,定點(常數(shù))的直線與曲線相交于、兩點.
(1)若點的坐標為,求證:
(2)若,以為直徑的圓的位置是否恒過一定點?若存在,求出這個定點,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在處的極值為0.
(1)求常數(shù)的值;
(2)求的單調(diào)區(qū)間;
(3)方程在區(qū)間上有三個不同的實根時,求實數(shù)的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com