【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

【答案】A
【解析】解:由已知可得函數(shù)y=Asin(ωx+)的圖象經(jīng)過(﹣ ,2)點(diǎn)和(﹣ ,2)

則A=2,T=π即ω=2

則函數(shù)的解析式可化為y=2sin(2x+),將(﹣ ,2)代入得

+= +2kπ,k∈Z,

即φ= +2kπ,k∈Z,

當(dāng)k=0時(shí),φ=

此時(shí)

故選A

根據(jù)已知中函數(shù)y=Asin(ωx+)在一個(gè)周期內(nèi)的圖象經(jīng)過(﹣ ,2)和(﹣ ,2),我們易分析出函數(shù)的最大值、最小值、周期,然后可以求出A,ω,φ值后,即可得到函數(shù)y=Asin(ωx+)的解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法中錯(cuò)誤的是(
A.若p或q為假命題,則p、q均為假命題.
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件.
C.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
D.對(duì)于命題p:存在x∈R使得x2+x+1<0,則非p:存在x∈R,使x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B.
(2)若 ,△ABC的周長(zhǎng)為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= x3﹣2x2+3x﹣m
(1)求f(x)的極值
(2)當(dāng)m取何值時(shí),函數(shù)f(x)有三個(gè)不同零點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點(diǎn).
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p: <1,q:x2+(a﹣1)x﹣a>0,若p是q的充分不必要條件,則實(shí)數(shù)a的取值范圍是(
A.(﹣2,﹣1]
B.[﹣2,﹣1]
C.[﹣3,﹣1]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(I)若A,B兩點(diǎn)的縱會(huì)標(biāo)分別為 的值;
(II)已知點(diǎn)C是單位圓上的一點(diǎn),且 的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點(diǎn).
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體ABCD及其三視圖如圖1,2所示.

(1)求四面體ABCD的體積;
(2)若點(diǎn)E為棱BC的中點(diǎn),求異面直線DE和AB所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案