已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對于任意的x、y∈R,都有f(x+y)=f(x)+f(y).
(1)求證:f(0)=0;
(2)若f(x)是奇函數(shù),試舉出兩個這樣的函數(shù);
(3)若當(dāng)x≥0時,f(x)<0,
1)試判斷函數(shù)f(x)在R上的單調(diào)性,并證明之;
2)判斷函數(shù)|f(x)|=a.所有可能的解的個數(shù),并求出對應(yīng)的a的范圍;
分析:(1)令令x=y=0,代入恒等式f(x+y)=f(x)+f(y)即可求得.
(2)此恒等式對應(yīng)的函數(shù)可以舉出兩個沒有常數(shù)項(xiàng)的一次函數(shù).
(3)可由定義法證明,其步驟是先取值,再作差,由于函數(shù)是一抽象函數(shù),判斷差的符號時要注意題設(shè)中條件x≥0時,f(x)<0的使用,由此先取x1<x2,則x2-x1>0,由作差證明即可.
解答:解:(1)令x=y=0.則f(0)=f(0)+f(0)所以f(0)=0
(2)令y=-x,則f(0)=f(-x)+f(x)
即f(-x)=-f(x)
故f(x)為奇函數(shù);
例如:y=-2x,y=3x;
(3)任取x1<x2,則x2-x1>0,故 f(x2-x1)<0
又有題設(shè)知 f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)<0
則該函數(shù)f(x2)<f(x1
所以該函數(shù)f(x)為(-∞,+∞)單調(diào)減函數(shù)
2)由f(x+y)=f(x)+f(y)以及①的結(jié)論,③的題設(shè)當(dāng)x≥0時,f(x)<0知
x<0時,(x)<0
又由1)知函數(shù)f(x)為(-∞,+∞)單調(diào)減函數(shù)故知f(x)在(-∞,0]上減,在[0,+∞)上增且f(0)=0
故有:
當(dāng)a>0時,有兩解;
當(dāng)a=0時,有一解;
當(dāng)a<0時,無解;
點(diǎn)評:本題考點(diǎn)是抽象函數(shù)及其運(yùn)用,考查靈活賦值求函數(shù)值以及運(yùn)用恒等式靈活變形證明函數(shù)的單調(diào)性,利用復(fù)合函數(shù)的單調(diào)性判斷方程的根的個數(shù),本題涉及到的考點(diǎn)較多,知識性與技巧性都很強(qiáng),是知識完善結(jié)合的一個好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對于任意的實(shí)數(shù)x,y,f(x+y)=f(x)+f(y),且x>0時,f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數(shù);
(3)證明:f(x)是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)y=f(x)滿足條件:對任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求證:f(x)是奇函數(shù),
(3)舉出一個符合條件的函數(shù)y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)fn(x)=xn,(x∈N*),其導(dǎo)函數(shù)記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數(shù),x1≠x2.設(shè)函數(shù)g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)無極值點(diǎn),其導(dǎo)函數(shù)g′(x)有零點(diǎn),求m的值;
(Ⅲ)求函數(shù)g(x)在x∈[0,a]的圖象上任一點(diǎn)處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的函數(shù)f(x)滿足xf(x)為偶函數(shù),f(x+2)=-f(x),(x∈R) 且當(dāng)1≤x≤3時,f(x)=(2-x)3
(1)求-1≤x≤0時,函數(shù)f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集上的偶函數(shù)y=f(x)在區(qū)間(0,+∞)上是增函數(shù),那么y1=f(
π
3
)
y2=f(3x2+1)y3=f(log2
1
4
)
之間的大小關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊答案