17.設(shè)f(x)=$\left\{\begin{array}{l}{2•{e}^{x-1},x≤2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,則f[f(2)]=( 。
A.0B.1C.3D.2

分析 由已知先求出f(2)=$lo{g}_{3}({2}^{2}-1)=lo{g}_{3}3$=1,從而f[f(2)]=f(1),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{2•{e}^{x-1},x≤2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,
∴f(2)=$lo{g}_{3}({2}^{2}-1)=lo{g}_{3}3$=1,
∴f[f(2)]=f(1)=2e1-1=2.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)F(x)為f(x)的原函數(shù),且當(dāng)x≥0時(shí)有:f(x)F(x)=$\frac{x{e}^{x}}{2(1+x)^{2}}$,已知F(0)=1,F(xiàn)(x)>0,試求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在(0,+∞)上的函數(shù)f(x)滿足$f({\frac{x}{y}})=f(x)-f(y)$,且當(dāng)x>1時(shí),f(x)<0
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并說明;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=$\left\{\begin{array}{l}{x+2,(x≤-1)}\\{{x}^{2},(-1<x<2)}\\{2x,(x≥2)}\end{array}\right.$,則f(3)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)g(x)=log2x,x∈(0,2),若關(guān)于x的方程|g(x)|2+m|g(x)|+2m+3=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍為$({-\frac{3}{2},-\frac{4}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.某校高一(1)班50個(gè)學(xué)生選擇校本課程,他們?cè)贏、B、C三個(gè)模塊中進(jìn)行選擇,且至少需要選擇1個(gè)模塊,具體模塊選擇的情況如表:
模塊模塊選擇的學(xué)生人數(shù)模塊模塊選擇的學(xué)生人數(shù)
A28A與B11
B26A與C12
C26B與C13
則三個(gè)模塊都選擇的學(xué)生人數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合M是同時(shí)滿足下列條件的函數(shù)f(x)的全體:①f(x)的定義域?yàn)椋?,+∞);②對(duì)任意的正實(shí)數(shù)x,都有f(x)=f(${\frac{1}{x}}$)成立.
(1)設(shè)函數(shù)f(x)=$\frac{x}{{1+{x^2}}}$(x>0),證明:f(x)屬于集合M,且存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立;
(2)對(duì)于集合M中的任意函數(shù)f(x),證明:存在定義域?yàn)閇2,+∞)的函數(shù)g(x),使得對(duì)任意的正實(shí)數(shù)x,都有g(shù)(x+$\frac{1}{x}}$)=f(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=2.
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)兩圓交點(diǎn)分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某初級(jí)中學(xué)有學(xué)生270人,其中一年級(jí)108人,二、三年級(jí)各81人,現(xiàn)要利用抽樣方法抽取10人參加某項(xiàng)調(diào)查,考慮選用簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣三種方案,使用簡單隨機(jī)抽樣和分層抽樣時(shí),將學(xué)生按一、二、三年級(jí)依次統(tǒng)一編號(hào)為1,2,…,270;使用系統(tǒng)抽樣時(shí),將學(xué)生統(tǒng)一隨機(jī)編號(hào)1,2,…,270,并將整個(gè)編號(hào)依次分為10段.如果抽得號(hào)碼有下列四種情況:
①5,9,100,107,111,121,180,195,200,265,
②7,34,61,88,115,142,169,196,223,250;
③30,57,84,111,138,165,192,219,246,270;
④11,38,65,92,119,146,173,200,227,254;
關(guān)于上述樣本的下列結(jié)論中,正確的是( 。
A.②、④都可能為分層抽樣B.①、③都不能為分層抽樣
C.①、④都可能為系統(tǒng)抽樣D.②、③都不能為系統(tǒng)抽樣

查看答案和解析>>

同步練習(xí)冊(cè)答案