【題目】如圖所示,在正方體ABCD-A′B′C′D′中:
(1)求二面角D′-AB-D的大。
(2)若M是C′D′的中點,求二面角M-AB-D的大。
【答案】
(1)解:在正方體ABCD-A′B′C′D′中,AB⊥平面ADD′A′,所以AB⊥AD′,AB⊥AD,因此∠D′AD為二面角D′-AB-D的平面角,在Rt△D′DA中,∠D′AD=45°,所以二面角D′-AB-D的大小為45°
(2)解:因為M是C′D′的中點,所以MA=MB,取AB的中點N,連接MN,則MN⊥AB.取CD的中點H,連接HN,則HN⊥AB.
從而∠MNH是二面角M-AB-D的平面角.∠MNH=45°,所以二面角M-AB-D的大小為45°.
【解析】(1)利用正方體的性質結合已知條件可得出線面垂直進而找到二面角D′-AB-D的平面角,再利用解三角形的知識求出平面角的大小進而得出二面角的大小。(2)由已知條件作出輔助線借助正方體的性質可找到∠MNH是二面角M-AB-D的平面角,根據已知條件即可求出平面角的大小故可得二面角的大小。
【考點精析】根據題目的已知條件,利用直線與平面垂直的性質的相關知識可以得到問題的答案,需要掌握垂直于同一個平面的兩條直線平行.
科目:高中數學 來源: 題型:
【題目】某大學中文系共有本科生5000人,其中一、二、三、四年級的學生比為5:4:3:1,要用分層抽樣的方法從該系所有本科生中抽取一個容量為260的樣本,則應抽二年級的學生( )
A.100人
B.60人
C.80人
D.20人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各對直線不互相垂直的是( )
A.l1的傾斜角為120°,l2過點P(1,0),Q(4, )
B.l1的斜率為- ,l2過點P(1,1),Q
C.l1的傾斜角為30°,l2過點P(3, ),Q(4,2 )
D.l1過點M(1,0),N(4,-5),l2過點P(-6,0),Q(-1,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若拋物線的頂點是雙曲線x2﹣y2=1的中心,焦點是雙曲線的右頂點
(1)求拋物線的標準方程;
(2)若直線l過點C(2,1)交拋物線于M,N兩點,是否存在直線l,使得C恰為弦MN的中點?若存在,求出直線l方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(1)求函數f(x)的單調區(qū)間;
(2)若g(x)=xf(x)+mx在區(qū)間(0,e]上的最大值為﹣3,求m的值;
(3)若x≥1時,有不等式f(x)≥ 恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位決定建造一批簡易房(房型為長方體狀,房高2.5米),前后墻用2.5米高的彩色鋼板,兩側用2.5米高的復合鋼板,兩種鋼板的價格都用長度來計算(即:鋼板的高均為2.5米,用鋼板的長度乘以單價就是這塊鋼板的價格),每米單價:彩色鋼板為450元,復合鋼板為200元.房頂用其它材料建造,每平方米材料費為200元.每套房材料費控制在32000元以內.
(1)設房前面墻的長為x,兩側墻的長為y,所用材料費為p,試用x,y表示p;
(2)在材料費的控制下簡易房面積S的最大值是多少?并指出前面墻的長度x應為多少米時S最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖為某校語言類專業(yè)N名畢業(yè)生的綜合測評成績(百分制)分布直方圖,已知80~90分數段的學員數為21人. (Ⅰ)求該專業(yè)畢業(yè)總人數N和90~95分數段內的人數n;
(Ⅱ)現欲將90~95分數段內的n名人分配到幾所學校,從中安排2人到甲學校去,若n人中僅有兩名男生,求安排結果至少有一名男生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=lnx+ x2 .
(1)求曲線f(x)在x=1處的切線方程;
(2)設P為曲線f(x)上的點,求曲線C在點P處切線的斜率的最小值及傾斜角α的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com