【題目】已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:
①是周期函數(shù); ②是它的一條對稱軸;
③是它圖象的一個對稱中心; ④當(dāng)時,它一定取最大值;
其中描述正確的是__________.
【答案】①③
【解析】分析:本題函數(shù)的性質(zhì),先對已知是定義在的奇函數(shù),且為偶函數(shù)用定義轉(zhuǎn)化為恒等式,再由兩個恒等式進(jìn)行合理變形得出與四個命題有關(guān)的結(jié)論,通過推理證得①③正確.
詳解: 因為是定義在上的奇函數(shù),且為偶函數(shù),
所以,①
,②
,③
由③知函數(shù)有對稱軸,
由②③得,
令,則,
,
故有,
兩者聯(lián)立得,
可見函數(shù)是周期函數(shù),且周期為,
由①知:,代入上式得:,
由此式可知:函數(shù)有對稱中心,由此證得①③是正確命題,
所以當(dāng)時,它取最大值或最小值,也可能不是最值,故④錯誤,故答案為①③.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數(shù)n都成立,則的值為( )
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,是否存在定點,對于任意的都有,若存在,求出點的坐標(biāo);若不存在,請說明理由;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點,點的坐標(biāo)為,點的坐標(biāo)為,其中且.設(shè).
()若,,,求方程在區(qū)間內(nèi)的解集.
()若函數(shù)滿足:圖象關(guān)于點對稱,在處取得最小值,試確定、和應(yīng)滿足的與之等價的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知多面體中,四邊形為矩形, , ,平面平面, 、分別為、的中點.
()求證: .
()求證: 平面.
()若過的平面交于點,交于,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個零點,則實數(shù)k的取值范圍是( )
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論不正確的是________(填序號).
①各個面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;
④圓錐的頂點與底面圓周上的任意一點的連線都是母線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com