不用求根公式,求函數(shù)f(x)=(x-2)(x-5)-1的零點的個數(shù),并比較零點與3的大小.
考點:函數(shù)零點的判定定理
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=(x-2)(x-5)-1的零點的個數(shù)即函數(shù)y=(x-2)(x-5)與函數(shù)y=1的圖象的交點個數(shù).
解答: 解:作函數(shù)y=(x-2)(x-5)與函數(shù)y=1的圖象可得,

從而可知,函數(shù)f(x)=(x-2)(x-5)-1的零點的個數(shù)為2;
且兩個零點一個比3大,另一個比3小.
點評:本題考查了函數(shù)的零點與函數(shù)的圖象的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個等比數(shù)列{an}共有2n+1項,奇數(shù)項之積為100,偶數(shù)項之積為120,則an+1為( 。
A、
6
5
B、
5
6
C、20
D、110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,m和n都是實數(shù),且m(1+i)=7+ni,則
m+ni
m-ni
(  )
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1y=x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A,B兩個不同的點,與X軸相交于F.
(Ⅰ)證明:a2+b2>1;
(Ⅱ)若橢圓的離心率為
3
2
,O是坐標的原點,求
OA
OB
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
x3-4x+4.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對x∈[0,3],都有f(x)<c恒成立,求實數(shù)c的取值范圍;
(3)若關(guān)于x的方程f(x)=m有三個解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,則f(2015)的值為( 。
A、-1B、1C、3D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
9
-
y2
5
=1
與橢圓
x2
25
+
y2
11
=1
,一定有( 。
A、兩離心率之積為1
B、相同的兩條準線
C、相同的兩個焦點
D、雙曲線的實軸長等于橢圓的長軸長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2sinx+a(x∈[0,
π
2
]),a為常數(shù).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在[0,
π
2
]上有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|m2x2-n=0},當(dāng)m,n滿足什么條件時,集合A是有限集?無限集?空集?

查看答案和解析>>

同步練習(xí)冊答案