21、已知橢圓經(jīng)過點(0,),離心率為,經(jīng)過橢圓C的右焦點F的直線l交橢圓于A、B兩點,點A、F、B在直線x=4上的射影依次為點D、K、E.

(1)求橢圓C的方程;

(2)若直線l交y軸于點M,且,當直線l的傾斜角變化時,探求的值是否為定值?若是,求出的值,否則,說明理由;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:黑龍江省大慶鐵人中學2011屆高三上學期期末考試數(shù)學理科試題 題型:044

已知橢圓經(jīng)過點(0,1),離心率

(1)求橢圓C的方程

(2)設直線x=my+1與橢圓C交于A,B兩點,點A關于x軸的對稱點為.試問:當m變化時,直線與x軸是否交于一個定點?若是,請寫出定點坐標,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省淄博市2011屆高三第二次模擬數(shù)學文綜試題 題型:044

已知橢圓經(jīng)過點(0,),離心率為,經(jīng)過橢圓C的右焦點F的直線l交橢圓于A、B兩點,點A、F、B在直線x=4上的射影依次為點D、K、E.

(1)求橢圓C的方程;

(2)若直線l交y軸于點M,且,當直線l的傾斜角變化時,探求的值是否為定值?若是,求出的值,否則,說明理由;

(3)連接AE、BD,試探索當直線l的傾斜角變化時,直線AE與BD是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省、長治二中高三第二次聯(lián)考文科數(shù)學 題型:解答題

(本小題滿分12分)

已知橢圓經(jīng)過點,離心率為

(1)求橢圓的方程;

(2)設過定點M(0,2)的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)

已知橢圓經(jīng)過點(0,),離心率為,經(jīng)過橢圓C的右焦點F的直線l交橢圓于A、B兩點,點A、F、B在直線x=4上的射影依次為點D、K、E.

(1)求橢圓C的方程;

(2)若直線l交y軸于點M,且,當直線l的傾斜角變化時,探求的值是否為定值?若是,求出的值,否則,說明理由;

(3)連接AE、BD,試探索當直線l的傾斜角變化時,直線AE與BD是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

同步練習冊答案