【題目】已知函數(shù)定義域為,部分對應(yīng)值如表,的導(dǎo)函數(shù)的圖象如圖所示. 下列關(guān)于函數(shù)的結(jié)論正確的有( )
A.函數(shù)的極大值點有個
B.函數(shù)在上是減函數(shù)
C.若時,的最大值是,則的最大值為4
D.當時,函數(shù)有個零點
【答案】ABD
【解析】
利用導(dǎo)函數(shù)的圖象可判斷A、B選項的正誤;取,結(jié)合函數(shù)的最值與單調(diào)性的關(guān)系可判斷C選項的正誤;作出函數(shù)的草圖,數(shù)形結(jié)合可判斷D選項的正誤.綜合可得出結(jié)論.
由導(dǎo)數(shù)的正負性可知,函數(shù)的單調(diào)遞增區(qū)間為、,單調(diào)遞減區(qū)間為、,B選項正確;
函數(shù)有個極大值點,A選項正確;
當時,函數(shù)最大值是,而最大值不是,C選項錯誤;
作出函數(shù)的圖象如下圖所示,由下圖可知,當時,函數(shù)與函數(shù)的圖象有四個交點,D選項正確.
故選:ABD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,以橢圓的左頂點為圓心作圓:,設(shè)圓與橢圓交于點與點.
(1)求橢圓的方程;
(2)求的最小值,并求此時圓的方程;
(3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點,為坐標原點,
求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,側(cè)面底面,,,為線段的中點.
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓周上有9個點,以這9個點為頂點作3個三角形.當這3個三角形無公共頂點且邊互不相交時,我們把它稱為一種構(gòu)圖.滿足這樣條件的構(gòu)圖共有( )種.
A. 3 B. 6 C. 9 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某射手在一次射擊訓(xùn)練中,射中10環(huán),9環(huán),8環(huán)、7環(huán)的概率分別是0.21,0.23,0.25,0.28,計算這個射手在一次射擊中:
(1)射中10環(huán)或7環(huán)的概率; (2)不夠7環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)H為銳角△ABC的垂心.由頂點A向以BC為直徑的⊙O作一條切線AE,切點為E,聯(lián)結(jié)EH交AO于點G,過G任意作⊙O的一條弦PQ.證明:AO 平分∠PAQ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 的內(nèi)切圓切邊于點, 而是邊上的任意內(nèi)點.設(shè)和的內(nèi)切圓圓心分別是和.
(1)求證:∠I1DI2 =90°(即、、、四點共圓);
(2)設(shè)、、、四點所在的圓周的半徑為, 而的內(nèi)切圓半徑為,試求的取值范圍(取遍各種形狀的三角形,點取遍邊上的每一個內(nèi)點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)判斷變量與之間是正相關(guān)還是負相關(guān);
(3)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.
參與公式: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)設(shè)函數(shù),若有兩個零點.
(i)求的取值范圍;
(ii)證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com