15.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x-2y≤2\\ 3x+y≤4\\ x-y≥-4\end{array}\right.$,則目標(biāo)函數(shù)z=y-2x的最大值是14.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,求最大值.

解答 14解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=y-2x得y=2x+z,
平移直線y=2x+z,
由圖象可知當(dāng)直線y=2x+z經(jīng)過(guò)點(diǎn)B時(shí),直線y=2x+z的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{x-2y=2}\\{x-y=-4}\end{array}\right.$,解得x=-10,y=-6即B(-10,-6),
代入目標(biāo)函數(shù)得z=-6+2×(-10)=14
即z=y-2x的最大值是14.
故答案為:14.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=4cos({x-\frac{π}{2}})•sin({x-\frac{π}{3}})-1$.
(1)求函數(shù)y=f(x)的最小正周期;
(2)已知△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且a,b,c成等比數(shù)列,求f(B)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y≥3\\ x+2y≥6\\ x≤8\end{array}\right.$則z=x-2y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某中學(xué)為了解高中入學(xué)新生的身高情況,從高一年級(jí)學(xué)生中按分層抽樣共抽取了50名學(xué)生的身高數(shù)據(jù),分組統(tǒng)計(jì)后得到了這50名學(xué)生身高的頻數(shù)分布表:
 身高(cm)分組[145,155)[155,165)[165,175)[175,185]
 男生頻數(shù) 1 5 12 4
 女生頻數(shù) 7 15 4 2
(Ⅰ)在答題卡上作出這50名學(xué)生身高的頻率分布直方圖;
(Ⅱ)估計(jì)這50名學(xué)生身高的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)現(xiàn)從身高在[175,185]這6名學(xué)生中隨機(jī)抽取3名,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(1,2),向量$\overrightarrow{c}$在$\overrightarrow{a}$方向上的投影為2.若$\overrightarrow{c}$∥$\overrightarrow$,則|$\overrightarrow{c}$|的大小為( 。
A..2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某食品店為了了解氣溫對(duì)銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量y(單位:千克)與該地當(dāng)日最低氣溫x(單位:°C)的數(shù)據(jù),如下表:
x258911
y1210887
(1)求出y與x的回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)判斷y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6°C,請(qǐng)用所求回歸方程預(yù)測(cè)該店當(dāng)日的銷售量;
(3)設(shè)該地1月份的日最低氣溫X~N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline x$,σ2近似為樣本方差s2,求P(3.8<X<13.4).
附:①回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x\overline{y}}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,σ2),則P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.
(Ⅰ)求橢圓E的方程及點(diǎn)T的坐標(biāo);
(Ⅱ)設(shè)O是坐標(biāo)原點(diǎn),直線l'平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.證明:存在常數(shù)λ,使得PT2=λ|PA|•|PB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.P為雙曲線x2$-\frac{{y}^{2}}{3}$=1右支上一點(diǎn),F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),若|PF1|+|PF2|=10,則$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某產(chǎn)品的廣告費(fèi)用x萬(wàn)元與銷售額y萬(wàn)元的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x2345
銷售額y26394954
根據(jù)上表可得回歸方程$\widehaty=9.4x+a$,據(jù)此模型預(yù)測(cè),廣告費(fèi)用為6萬(wàn)元時(shí)的銷售額為( 。┤f(wàn)元.
A.65.5B.66.6C.67.7D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案