13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線方程是y=±2x,則雙曲線的離心率為$\sqrt{5}$.

分析 由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線方程是y=±2x,可得b=2a,從而c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,即可求出雙曲線的離心率.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線方程是y=±2x,
∴$\frac{a}$=2,
∴b=2a,
∴c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評 本題考查雙曲線的離心率,考查雙曲線的性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(Ⅰ)化簡求值:sin10°(1+$\frac{\sqrt{3}}{tan20°}$);
(Ⅱ)已知sinθ-cosθ=$\frac{1}{5}$,θ∈(0,π),求$\frac{sinθ}{1-tanθ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…-\frac{{{x^{2016}}}}{2016}$(其中x>0),g(x)=lnx+x-3,設(shè)函數(shù)F(x)=f(x-1)g(x+1),且函數(shù)F(x)的零點(diǎn)都在區(qū)間[a,b](a<b,a∈Z,b∈Z)內(nèi),則b-a的最小值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.點(diǎn)(0,0)和點(diǎn)(-1,1)在直線2x+y+m=0的同側(cè),則m的取值范圍是( 。
A.m>1或m<0B.m>2或m<1C.0<m<1D.1<m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在多面體ABCDEFG中,四邊形ABCD與CDEF均為邊長為4的正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(1)求證:GH⊥平面EFG;
(2)求三棱錐G-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=x3-2ax+a在(1,2)內(nèi)有極小值,則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{3}{2}$)B.(0,3)C.($\frac{3}{2}$,6)D.(0,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求由三條曲線:y=x2,y=$\frac{1}{3}$x2,y=2 所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:“x>1”,命題q:“$\frac{1}{x}$<1”,則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知p:-4<x-a<4,q:(x-1)(2-x)>0,若¬p是¬q的充分條件,則實(shí)數(shù)a的取值范圍是[-2,5].

查看答案和解析>>

同步練習(xí)冊答案