在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對應(yīng)的參數(shù),射線與曲線交于點(diǎn).
(I)求曲線,的方程;
(II)若點(diǎn),在曲線上,求的值.
(I)曲線的方程為,或.
(II)
解析試題分析:(I)將及對應(yīng)的參數(shù),代入,
得,即,
所以曲線的方程為(為參數(shù)),或.
設(shè)圓的半徑為,由題意,圓的方程為,(或).
將點(diǎn)代入, 得,即.
(或由,得,代入,得),
所以曲線的方程為,或.
(II)因?yàn)辄c(diǎn), 在在曲線上,
所以,,
所以
考點(diǎn):本題主要考查簡單曲線的極坐標(biāo)方程,直角坐標(biāo)與極坐標(biāo)的互化,參數(shù)方程與普通方程的互化。
點(diǎn)評:中檔題,此類問題往往不難,解的思路比較明確。(3)是恒等式證明問題,利用點(diǎn)在曲線上,得到,,從中解出,,利用三角函數(shù)“平方關(guān)系”,達(dá)到證明目的。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點(diǎn)、,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,在曲線上求一點(diǎn),使它到直線的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知曲線,將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線. 以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點(diǎn)P,使點(diǎn)P到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為,曲線C1,C2相交于A,B兩點(diǎn)
(I)把曲線C1,C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(II)求弦AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,直線l的參數(shù)方程為:在以O(shè)為極點(diǎn),以x 軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:
(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線。
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)若把曲線上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,是圓的內(nèi)接三角行,的平分線交圓于點(diǎn)D,交BC于E,過點(diǎn)B的圓的切線與AD的延長線交于點(diǎn)F,在上述條件下,給出下列四個結(jié)論:①BD平分;②;③;④.則所有正確結(jié)論的序號是( )
A.①② | B.③④ | C.①②③ | D.①②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com