【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.

(1)一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格,

該傳染病的潛伏期受諸多因素影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表,請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關(guān)

潛伏期≤6

潛伏期>6

總計

50歲以上(含50歲)

100

50歲以下

55

總計

200

(2)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:下面的臨界值表僅供參考.

0.05

0.025

0.010

3.841

5.024

6.635

(參考公式:,其中.)

【答案】1)沒有95%的把握認為潛伏期與患者年齡有關(guān);(2)8

【解析】

1)根據(jù)題意補充完整列聯(lián)表,計算,對照臨界值得出結(jié)論;

2)由題意可知隨機變量,計算概率,列不等式組并結(jié)合題意求出的值.

解:(1)根據(jù)題意,補充完整列聯(lián)表如下:

潛伏期≤6

潛伏期>6

總計

50歲以上(含50歲)

65

35

100

50歲以下

55

45

100

總計

120

80

200

所以

所以沒有95%的把握認為潛伏期與患者年齡有關(guān);

(2)根據(jù)題意得,該地區(qū)每1 名患者潛伏期超過6天發(fā)生的概率為,

設(shè)被調(diào)查的20名患者中潛伏期超過6天的人數(shù)為,則,

,

,

,、

化簡得,解得,

因為,所以,

所以這20名患者中潛伏期超過6天的人數(shù)最有可能為8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,則的坐標(biāo)為_____________,直線與橢圓交于,兩點,且的重心恰為點,則直線斜率為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的角A,B,C的對邊分別為ab,c,已知.

1)求角A;

2)從三個條件:①;②;③的面積為中任選一個作為已知條件,求周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點與拋物線的焦點重合,其離心率.作兩條相互垂直的直線,且交拋物線,兩點,交橢圓于另一點.

1)求的值;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,分別為橢圓長軸的左、右端點,為直線上異于點的任意一點,連接交橢圓于.

1)若,求直線的方程;

2)是否存在軸上的定點使得以為直徑的圓恒過的交點?如果存在,請求出定點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)樓頂成一種“楔體”形狀,該“楔體”兩端成對稱結(jié)構(gòu),其內(nèi)部為鋼架結(jié)構(gòu)(未畫出全部鋼架,如圖1所示,俯視圖如圖2所示),底面是矩形,米,米,屋脊到底面的距離即楔體的高為1.5米,鋼架所在的平面垂直且與底面的交線為米,為立柱且O的中點.

1)求斜梁與底面所成角的大。ńY(jié)果用反三角函數(shù)值表示);

2)求此模體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上任意一點,線段的垂直平分線交于點,點的軌跡記為曲線

1)求曲線的方程;

2)過的直線交曲線于不同的兩點,交軸于點,已知,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是△ABC的一個內(nèi)角,且sinA+cosAa,其中a∈(0,1),則關(guān)于tanA的值,以下答案中,可能正確的是(

A.2B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莊子說:一尺之錘,日取其半,萬世不竭,這句話描述的是一個數(shù)列問題,現(xiàn)用程序框圖描述,如圖所示,若輸入某個正整數(shù)n后,輸出的S∈(,),則輸入的n的值為( 。

A.7B.6C.5D.4

查看答案和解析>>

同步練習(xí)冊答案