分析 根據(jù)題意只要先求出(1-x)6的通項(xiàng),求解展開式中的含x2,x3項(xiàng)的系數(shù),即可求a2,a3,從而得解a2+a3的值.
解答 解:由于:(2+x)(1-x)6=a0+a1x+a2x2+…+a7x7,
而:(1-x)6展開式的通項(xiàng)為:Tr+1=C${\;}_{6}^{r}$(-x)r,
所以:(2+x)(1-x)6展開式中含x2的項(xiàng)為:2C${\;}_{6}^{2}$(-x)2+x•C${\;}_{6}^{1}$(-x)=30x2-6x2=24x2,可得:a2=24,
(2+x)(1-x)6展開式中含x3的項(xiàng)為:2C${\;}_{6}^{3}$(-x)3+x•C${\;}_{6}^{2}$(-x)2=-40x3+15x3=-25x3,可得:a3=-25,
∴a2+a3=-1.
故答案為:-1.
點(diǎn)評(píng) 本題主要考查了二項(xiàng)展開式的通項(xiàng)在求解指定項(xiàng)中的應(yīng)用,解題的關(guān)鍵是尋求指定項(xiàng)得到的途徑,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 |
y | -1 | 1 | 8 | m |
A. | 4 | B. | $\frac{9}{2}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a0+a1+a2+a3 | B. | (a0+a1+a2+a3)x3 | ||
C. | a0+a1x+a2x2+a3x3 | D. | a0x3+a1x2+a2x+a3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com