19.已知i為虛數(shù)單位,復數(shù)z滿足z(1+i)=3-i,則z的實部為1.

分析 把已知等式變形,然后利用復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z,則z的實部可求.

解答 解:由z(1+i)=3-i,
得$z=\frac{3-i}{1+i}=\frac{(3-i)(1-i)}{(1+i)(1-i)}=\frac{2-4i}{2}=1-2i$,
則z的實部為:1.
故答案為:1.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$\overrightarrow a=(3,-4)$,$\overrightarrow b=(cosα,sinα)$,則$|{\overrightarrow a+2\overrightarrow b}|$的取值范圍是( 。
A.[1,4]B.[2,6]C.[3,7]D.$[2\sqrt{2},4\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosθ}\\{y=1+2sinθ}\end{array}\right.$(θ為參數(shù)).以原點O為極點,x軸的非負半軸為極軸建立極坐標方程.
(1)求曲線C的極坐標方程;
(2)若直線l:θ=α(α∈[0,π),ρ∈R)與曲線C相交于A,B兩點,設線段AB的中點為M,求|OM|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,若f(x2-2x)+f(2b-b2)≤0,且0≤x≤2,則x-b的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓x2+2y2=m(m>0),以橢圓內一點M(2,1)為中點作弦AB,設線段AB的中垂線與橢圓相交于C,D兩點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的m,使得A,B,C,D在同一個圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某校高三年級準備舉行一次座談會,其中三個班被邀請的學生數(shù)如表所示:
 班級 高三(1) 高三(2) 高三(3)
 人數(shù) 3 3 4
(Ⅰ)若從這10名學生中隨機選出2名學生發(fā)言,求這2名學生不屬于同一班級的概率;
(Ⅱ)若從這10名學生中隨機選出3名學生發(fā)言,設X為來自高三(1)班的學生人數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知三棱錐O-ABC中,A,B,C三點均在球心O的球面上,且AB=BC=1,∠ABC=120°,若球O的體積為$\frac{256π}{3}$,則三棱錐O-ABC的體積是$\frac{\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知5件產品中有2件次品,現(xiàn)逐一檢測,直至能確定所有次品為止,記檢測的次數(shù)為ξ,則Eξ=( 。
A.3B.$\frac{7}{2}$C.$\frac{18}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)$f(x)=\frac{2x-1}{e^x}$在x=1處的切線的斜率為$\frac{1}{e}$.

查看答案和解析>>

同步練習冊答案