【題目】為支援武漢抗擊新冠肺炎疫情,軍隊抽組1400名醫(yī)護人員于23日起承擔武漢火神山專科醫(yī)院醫(yī)療救治任務.此外,從解放軍疾病預防控制中心、軍事科學院軍事醫(yī)學研究院抽取15名專家組成聯(lián)合專家組,指導醫(yī)院疫情防控工作.該醫(yī)院開設了重癥監(jiān)護病區(qū)(),重癥病區(qū)(),普通病區(qū)()三個病區(qū).現(xiàn)在將甲乙丙丁4名專家分配到這三個病區(qū)了解情況,要求每個專家去一個病區(qū),每個病區(qū)都有專家,一個病區(qū)可以有多個專家.已知甲不能去重癥監(jiān)護病區(qū)(),乙不能去重癥病區(qū)(),則一共有__________種分配方式

【答案】17

【解析】

根據(jù)甲、乙兩人是否在一起分成兩種情況,分別計算出分配的方法數(shù),然后根據(jù)分類加法計數(shù)原理求得所有的分配方法數(shù).

按照甲乙是否在一起分為兩種情況:①甲乙在一起,則都在病區(qū),則丙丁分配在病區(qū),有兩種.②甲乙不在一起,若甲在,種,若甲在,則乙在,有種,共計17種.

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結構如圖所示,開口為正六邊形ABCDEF,側棱AA'、BB'、CC'DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構成.瑞士數(shù)學家克尼格利用微積分的方法證明了蜂房的這種結構是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學方法設計自己的家園.英國數(shù)學家麥克勞林通過計算得到∠BCD′=109°2816'.已知一個房中BB'5,AB2,tan54°4408',則此蜂房的表面積是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,為四邊形對角線交點,為棱的中點,且平面.

1)證明:平面

2)證明:四邊形為矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了實施科技下鄉(xiāng),精準脫貧戰(zhàn)略,某縣科技特派員帶著,三個農(nóng)業(yè)扶貧項目進駐某村,對該村僅有的甲、乙、丙、丁四個貧困戶進行產(chǎn)業(yè)幫扶.經(jīng)過前期實際調(diào)研得知,這四個貧困戶選擇,,三個扶貧項目的意向如下表:

扶貧項目

貧困戶

甲、乙、丙、丁

甲、乙、丙

丙、丁

若每個貧困戶只能從自己已登記的選擇意向項目中隨機選取一項,且每個項目至多有兩個貧困戶選擇,則不同的選法種數(shù)有(

A.24B.16C.10D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,.

1)求證:;

2)若,,的中點,求平面將三棱錐分成的兩部分幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線.

1)寫出曲線的普通方程和曲線的直角坐標方程;

2)若曲線上有一動點,曲線上有一動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某學校研究性課題《什么樣的活動最能促進同學們進行垃圾分類》向題的統(tǒng)計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結論錯誤的是(  )

A. 回答該問卷的總人數(shù)不可能是100

B. 回答該問卷的受訪者中,選擇“設置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學校團委會宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學校要求”的少8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12,3,……,99個數(shù)全部填入如圖所示的3×3方格內(nèi),每個格內(nèi)填一個數(shù),則使得每行中的數(shù)從左至右遞增,每列中的數(shù)從上至下遞減的不同填法共有( )種

A.12B.24C.42D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若,,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(Ⅰ)中曲線的左、右頂點分別為、,過點的直線與曲線交于兩點(不與,重合).若直線與直線相交于點,試判斷點,是否共線,并說明理由.

查看答案和解析>>

同步練習冊答案