18.若函數(shù)f(x)=ex-x+a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(∞,-1).

分析 方法一:可求導(dǎo)數(shù)f′(x)=ex-1,然后根據(jù)導(dǎo)數(shù)的符號(hào)便可求出函數(shù)f(x)的最小值及函數(shù)f(x)的單調(diào)性,根據(jù)函數(shù)只有兩個(gè)零點(diǎn)便可得出關(guān)于a的不等式,從而可求出實(shí)數(shù)a的取值范圍.
方法二:分別畫出直線y=ex,與y=x-a的圖象,根據(jù)導(dǎo)數(shù)求出切線方程,即可判斷a的范圍.

解答 解:方法一:f′(x)=ex-1;
∴x<0時(shí),f′(x)<0,x>0時(shí),f′(x)>0;
∴x=0時(shí),f(x)取最小值1+a,
f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
又f(x)有有兩個(gè)零點(diǎn);
∴1+a<0;
∴a<-1;
方法二:分別畫出直線y=ex,與y=x-a的圖象,如圖所示:
∴y′=ex
∴y′|x=0=1,
∴切線方程為y=x+1,
∴-a>1,
∴a<-1
故a的取值范圍為(∞,-1),
故答案為:(∞,-1)

點(diǎn)評(píng) 本題主要考查函數(shù)的零點(diǎn)以及數(shù)形結(jié)合方法,數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡(jiǎn)捷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=ex|x-1|-2ax+3a恰有3個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是$(-\frac{{\sqrt{e}}}{4},0)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-ax(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)的圖象與直線y=a交于A、B兩點(diǎn),記A、B兩點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2,證明:x1+x2<lna2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=h.
(1)若h=2,求AC1與平面A1BD所成角的正弦值;
(2)若二面角A1-BD-C的大小為$\frac{3}{4}$π,求h的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則此幾何體的體積是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{x}{k}$-lnx(k>0)
(1)求f(x)的最小值;
(2)若k=2,判斷方程f(x)-1=0在區(qū)間($\frac{1}{e}$,1)內(nèi)實(shí)數(shù)解的個(gè)數(shù);
(3)證明:對(duì)任意給定的M>0,總存在正數(shù)x0,使得當(dāng)x>x0時(shí),恒有$\frac{x}{2}$-M>lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.梯形ABCD中,$\overrightarrow{AB}$=λ$\overrightarrow{AD}$+μ$\overrightarrow{BC}$,則λ+μ=(  )
A.1B.-1C.0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某空間幾何體的三視圖如圖所示,則該空間幾何體的體積為$2π+\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為平行四邊形,AB=1,BC=$\sqrt{2}$,∠ABC=45°,AE⊥PC,垂足為E.
(Ⅰ)求證:平面AEB⊥平面PCD;
(Ⅱ)若二面角B-AE-D的大小為150°,求側(cè)棱PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案