設(shè)實(shí)數(shù)a,b滿足2a+b=9.
(i)若|9-b|+|a|<3,求x的取值范圍;
(ii)若a,b>0,且z=a2b,求z的最大值.
考點(diǎn):絕對(duì)值不等式的解法
專題:不等式的解法及應(yīng)用
分析:(i)由題意可得|9-b|=2|a|,不等式|9-b|+|a|<3可化為|a|<1,由此解得a的范圍.
(ii)因?yàn)閍,b>0,2a+b=9,再根據(jù)z=a2b=a•a•b,利用基本不等式求得它的最大值.
解答: 解:(i)由2a+b=9得9-b=2a,即|9-b|=2|a|.
所以|9-b|+|a|<3可化為3|a|<3,即|a|<1,解得-1<a<1.
所以a的取值范圍-1<a<1.
(ii)因?yàn)閍,b>0,2a+b=9,
所以z=a2b=a•a•b≤(
a+a+b
3
)3=(
2a+b
3
)3=33=27
,當(dāng)且僅當(dāng)a=b=3時(shí),等號(hào)成立.
故z的最大值為27.…(7分)
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式的解法,基本不等式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(sin215°,cos215°)在直角坐標(biāo)平面上位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*),其前n項(xiàng)和為Sn,給出下列四個(gè)命題:
①若{an}是等差數(shù)列,則三點(diǎn)(10,
S10
10
)
、(100,
S100
100
)
、(110,
S110
110
)
共線;
②若{an}是等差數(shù)列,且a1=-11,a3+a7=-6,則S1、S2、…、Sn這n個(gè)數(shù)中必然存在一個(gè)最大者;
③若{an}是等比數(shù)列,則Sm、S2m-Sm、S3m-S2m(m∈N*)也是等比數(shù)列;
④若Sn+1=a1+qSn(其中常數(shù)a1q≠0),則{an}是等比數(shù)列;
⑤若等比數(shù)列{an}的公比是q(q是常數(shù)),且a1=1,則數(shù)列{an2}的前n項(xiàng)和sn=
1-q2n
1-q2

其中正確命題的序號(hào)是
 
.(將你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-alnx-x,g(x)=2x-2x
x
+kex
,(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(1)討論f(x)在其定義域上的單調(diào)性;
(2)若a=2,且不等式xf(x)≥g(x)對(duì)于?x∈(0,+∞)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是一個(gè)幾何體的三視圖,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,O為原點(diǎn).點(diǎn)A在x軸的正半軸上,點(diǎn)B在y軸的正半軸上,tan∠OAB=2.二次函數(shù)y=x2+mx+2的圖象經(jīng)過(guò)點(diǎn)A,B,頂點(diǎn)為D.
(1)求這個(gè)二次函數(shù)的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過(guò)點(diǎn)C.請(qǐng)直接寫出點(diǎn)C的坐標(biāo)和平移后所得圖象的函數(shù)解析式;
(3)設(shè)(2)中平移后所得二次函數(shù)圖象與y軸的交點(diǎn)為B1,頂點(diǎn)為D1.點(diǎn)P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(3)=-2.
(1)試判定該函數(shù)的奇偶性;
(2)試判斷該函數(shù)在R上的單調(diào)性;
(3)求f(x)在[-12,12]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩直線l1:ax+2y+6=0,l2:x+(a-1)y+(a2-1)=0,若l1⊥l2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.若acosA=bsinB,則,sinAcosA+cos2A=( 。
A、-
1
2
B、
1
2
C、-1
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案