(本小題滿分13分 )
已知四棱錐
的底面是邊長為2的正方形,
面
分別為
的中點,
(Ⅰ)求直線
與面
所成角的正弦值;
(Ⅱ)求二面角
的正切值.
(1)
(2)
(Ⅰ)取
的中點
連接
面
又由題意,有
面
∴面
面
又
知
面
所以
為直線
與面
所成的角,…………4分
由題意
所以
………………7分
(Ⅱ)過
作
交
的延長線于
連接
面
所以
在面
內(nèi)的射影為
所以
為二面角
的平面角………………10分
由
與
相似,所以
所以
……………………13分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,四棱錐
的底面
是邊長為1的菱形,
,
E是CD的中點,PA
底面ABCD,
。
(I)證明:平面PBE
平面PAB;
(II)求二面角A—BE—P和的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖所示,平面
PAD⊥平面
ABCD,
ABCD為正方形,
PA⊥
AD,且
PA=
AD=2,
E,
F,
G分別是線段
PA,
PD,
CD的中點。
(1)求證:
BC//平面
EFG;
(2)求三棱錐
E—
AFG的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知四邊形
是邊長為
的正方形,
分別為
的中點,沿
將
向同側(cè)折疊且與平面
成直二面角,連接
(1)求證
;
(2)求平面
與平面
所成銳角的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD.SD=2,
,E是SD上的點。
(Ⅰ)求證:
AC⊥BE;
(Ⅱ)求二面角C—AS—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分 )
如題18圖,已知四棱錐
的底面是邊長為2的正方形,
面
分別為
的中點.
(Ⅰ)求直線
與面
所成的角;
(Ⅱ)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
正四面體ABCD的棱長為1,E在BC上,F(xiàn)在AD上,BE=2EC,DF=2FA,則EF的
長度是_________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
平行四邊形ABCD的對角線的交點為O,點P在平面ABCD外的一點,且PA="PC," PD="PB," 則PO與平面 ABCD的位置關(guān)
系是( )
A.PO//平面 ABCD | B.PO平面ABCD |
C.PO與平面ABCD斜交 | D.PO⊥平面ABCD |
查看答案和解析>>